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Abstract. We present “Ouroboros Praos”, a proof-of-stake blockchain protocol that, for
the first time, provides security against fully-adaptive corruption in the semi-synchronous
setting : Specifically, the adversary can corrupt any participant of a dynamically evolving
population of stakeholders at any moment as long the stakeholder distribution maintains
an honest majority of stake; furthermore, the protocol tolerates an adversarially-controlled
message delivery delay unknown to protocol participants.

To achieve these guarantees we formalize and realize in the universal composition setting a
suitable form of forward secure digital signatures and a new type of verifiable random function
that maintains unpredictability under malicious key generation. Our security proof develops
a general combinatorial framework for the analysis of semi-synchronous blockchains that
may be of independent interest. We prove our protocol secure under standard cryptographic
assumptions in the random oracle model.

1 Introduction

The design of proof-of-stake blockchain protocols was identified early on as an important objective
in blockchain design; a proof-of-stake blockchain substitutes the costly proof-of-work component
in Nakamoto’s blockchain protocol [Nak08] while still providing similar guarantees in terms of
transaction processing in the presence of a dishonest minority of users, where this “minority” is to
be understood here in the context of stake rather than computational power.

The basic stability and security properties of blockchain protocols were first rigorously formulated
in [GKL15] and further studied in [KP15,PSS17]; these include common prefix, chain quality and
chain growth and refer to resilient qualities of the underlying data structure of the blockchain in
the presence of an adversary that attempts to subvert them.

Proof-of-stake protocols typically possess the following basic characteristics. Based on her local
view, a party is capable of deciding, in a publicly verifiable way, whether she is permitted to produce
the next block. Assuming the block is valid, other parties update their local views by adopting the
block, and proceed in this way continuously. At any moment, the probability of being permitted to
issue a block is proportional to the relative stake a player has in the system, as reported by the
blockchain itself.

A particularly challenging design aspect is that the above probabilistic mechanism should be
designed so that the adversary cannot bias it to its advantage. As the stake shifts, together with the
evolving population of stakeholders, so does the honest majority assumption, and hence the function
that appoints stakeholders should continuously take the ledger status into account. Preventing the
biasing of the election mechanism in a context of a blockchain protocol is a delicate task that so far
has eluded a practical solution that is secure against all attacks.

Our Results. We present “Ouroboros Praos”, a provably secure proof-of-stake protocol that is the
first to be secure against adaptive attackers and scalable in a truly practical sense. Our protocol is
based on a previous proof-of-stake protocol, Ouroboros [KRDO17], as its analysis builds on some
of the core combinatorial arguments that were developed to analyze that scheme. Nevertheless,
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the protocol construction has a number of novel elements that require a significant recasting and
generalization of the previous combinatorial analysis. In more detail, our results are as follows.

In Ouroboros Praos, deciding whether a certain participant of the protocol is eligible to issue a
block is decided via a private test that is executed locally using a special verifiable random function
(VRF) on the current time-stamp and a nonce that is determined for a period of time known as
an “epoch”. A special feature of this VRF primitive, novel to our approach, is that the VRF must
have strong security characteristics even in the setting of malicious key generation: specifically, if
provided with an input that has high entropy, the output of the VRF is unpredictable even when
an adversary has subverted the key generation procedure. We call such VRF functions “VRF with
unpredictability under malicious key generation” and we present a strong embodiment of this notion
with a novel Universal Composable (UC) formulation. We also present a very efficient realization of
this primitive under the Computational Diffie Hellman (CDH) assumption in the random oracle
model. Beyond this VRF notion, we also formalize in a UC fashion key evolving signatures that
provide the forward security that is necessary for handling the adaptive corruption setting.

In more detail, we analyze our protocol in the partial or semi-synchronous model [DLS88,PSS17].
In this setting, we still divide the protocol execution in time units which, as in [KRDO17], are
called slots, but there is a maximum delay of ∆ slots that is applied to message delivery and it
is unknown to the protocol participants.1 In order to cope with the ∆-semisynchronous setting
we introduce the concept of “empty slots” which occur with sufficient frequency to enable short
periods of silence that facilitate synchronization. This feature of the protocol gives also its moniker,
“Praos”, meaning “mellow”, or “gentle”. Ensuring that the adversary cannot exploit the stakeholder
keys that it possesses to confuse or out-maneuver the honest parties, we develop a combinatorial
analysis to show that the simple rule of following the longest chain still enables the honest parties
to converge to a unique view with high probability. To accomplish this we revisit and expand the
forkable strings and divergence analysis of [KRDO17]. We remark that significant alterations are
indeed necessary: As we demonstrate in Appendix D, the protocol of [KRDO17] and its analysis
are critically tailored to synchronous operation and is susceptible to a desynchronization attack
that can completely violate the common prefix property. Our new combinatorial analysis introduces
a new concept of characteristic strings and “forks” that reflects silent periods in protocol execution
and network delays. To bound the density of forkable strings in this ∆-semisynchronous setting
we establish a syntactic reduction from ∆-semisynchronous characteristic strings to synchronous
strings of [KRDO17] that preserves the structure of the forks they support. This is followed by
a probabilistic analysis that controls the distortion caused by the reduction and concludes that
∆-semisynchronous forkable strings are rare. Finally, we control the effective power of adaptive
adversaries in this setting with a stochastic dominance argument that permits us to carry out the
analysis of the underlying blockchain guarantees (e.g., common prefix) with a single distribution
that provably dominates all distributions on characteristic strings generated by adaptive adversaries.
We remark that these arguments yield graceful degradation of the analysis as a function of network
delays (∆), in the sense that the effective stake of the adversary is amplified by a function of ∆.

The above combinatorial analysis is nevertheless only sufficient to provide a proof of the static
stake case, i.e., the setting where the stake distribution relevant to the honest majority assumption
remains fixed at the onset of the computation and prior to the selection of the random genesis data
that are incorporated in the genesis block. For a true proof-of-stake system, we must permit the
set of stakeholders to evolve over time and appropriately adapt our honest stakeholder majority
assumption. Achieving this requires a bootstrapping argument that allows the protocol to continue
unboundedly by revising its stakeholder distribution as it evolves. We bootstrap our protocol in two
conceptual steps. First we show how bootstrapping is possible if a randomness beacon is available
to all participants. The beacon at regular intervals emits a new random value and the participants
can reseed the election process so the stakeholder distribution used for sampling could be brought
closer to the one that is current. A key observation here is that our protocol is resilient even if the
randomness beacon is weakened in the following two ways: (i) it leaks its value to the adversary
ahead of time by a bounded number of time units, (ii) it allows the adversary to reset its value if it

1 It is worth pointing out that the notion of slots we use in this work can be substantially shorter in terms
of real time elapsed compared to the slots of [KRDO17], where each slot represented a full round of
interaction between all participants.
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wishes within a bounded time window. We call the resulting primitive a “leaky resettable beacon”
and show that our bootstrapping argument still holds in this stronger adversarial setting.

In the final refinement of our protocol, we show how it is possible to implement the leaky
resettable beacon via a simple algorithm that concatenates the VRF outputs that were contributed
by the participants from the blockchain and subjects them to a hash function that is modeled
as a random oracle. This implementation explains the reasons behind the beacon relaxation we
introduced: leakiness stems from the fact that the adversary can complete the blockchain segment
that determines the beacon value before revealing it to the honest participants, while resettability
stems from the fact that the adversary can try a bounded number of different blockchain extensions
that will stabilize the final beacon value to a different preferred value.

Putting all the above together, we show how our protocol provides a “robust transaction ledger”
in the sense that an immutable record of transactions is built that also guarantees that new
transactions will be always included. Our security definition is in the ∆-semisynchronous setting
with full adaptive corruptions. As mentioned above, security degrades gracefully as ∆ increases,
and this parameter is unknown to the protocol participants.

Note that implementing the beacon via hashing VRF values will make feasible a type of “grinding
attack” where the adversary can trade hashing power for a slight bias of the protocol execution
to its advantage. We show how this bias can be controlled by suitably increasing the relevant
parameters depending on the hashing power that is available to the adversary.

Comparison to related work. The idea of proof-of-stake protocols has been discussed exten-
sively in the bitcoin forum.2 The manner that a stakeholder determines eligibility to issue a
block is always publicly verifiable and the proof of eligibility is either computed publicly (via
a calculation that is verifiable by repeating it) or by using a cryptographic mechanism that in-
volves a secret-key computation and a public-key verification. The first example of the former
approach appeared in PPCoin [KN12], and was followed by others including Ouroboros and Snow
White [BGM14,KRDO17,DPS16]; while the first example of the latter approach (that we also
employ in our work) appeared in NXT (cf. Section 2.4.1 of [Com14]) and was then also used
elsewhere, most notably in Algorand [Mic16]. The virtue of the latter approach is exactly in its
potential to control adaptive corruptions: due to the fact that the adversary cannot predict the
eligibility of a stakeholder to issue a block prior to corrupting it, she cannot gain an advantage by
directing its corruption quota to specific stakeholders. Nevertheless, none of these previous works
isolated explicitly the properties of the primitives that are required to provide a full proof of security
in the setting of adaptive corruptions. Injecting high quality randomness in the PoS blockchain was
proposed by Bentov et al. [BLMR14,BGM16], though their proposal does not have a full formal
analysis. The Ouroboros proof-of-stake protocol [KRDO17] is provably secure in a corruption model
that excludes fully adaptive attacks by imposing a corruption delay on the corruption requests
of the adversary. The Snow White proof-of-stake [DPS16] is the first to prove security in the
∆-semi-synchronous model but—as in the case of Ouroboros—adopts a weak adaptive corruption
model.

A recent work close to ours is Algorand [Mic16] that also provides a proof-of-stake ledger that
is adaptively secure. It follows an entirely different construction approach that runs a Byzantine
agreement protocol for every block and achieves adaptive-corruption security via a novel, appealing
concept of player-replaceability. However, Algorand is only secure against a 1/3 adversary bound;
and while the protocol itself is very efficient, it yields an inherently slower block production rate
compared to an “eventual consensus” protocol (like Bitcoin, Snow White, and Ouroboros). In
principle, proof-of-stake blockchain protocols can advance at the theoretical maximum speed (of one
block per communication round), while protocols relying on Byzantine agreement, like Algorand,
would require a larger number of rounds to settle each block.

Sleepy consensus [PS16] puts forth a technique for handling adaptive corruptions in a model that
also encompasses fail-stop and recover corruptions; however, the protocol can be applied directly
only in a static stake (i.e., permissioned) setting. We note that in fact our protocol can be also
proven secure in such mixed corruption setting, where both fail-stop and recover as well as Byzantine
corruptions are allowed (with the former occurring at an arbitrarily high rate); nevertheless this is
out of scope for the present exposition and we omit further details.

2 Refer e.g., to the posts by QuantumMechanic and others from 2011 https://bitcointalk.org/index.

php?topic=27787.0 (Last Accessed 19/09/2017).
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Note that the possibility of adversarial grinding in Ouroboros Praos is also present in previous
work that derives randomness by hashing [Mic16,DPS16], as opposed to a dedicated coin-tossing
protocol as in [KRDO17]. Following the examples of [Mic16,DPS16], we show that security can be
guaranteed despite any adversarial bias resulting from grinding. In fact, we show how to use the
q-bounded model of [GKL15] to derive a bound that shows how to increase the relevant security
parameters given the hashing power that is available to the adversary.

Finally, in the present exposition we also put aside incentives; nevertheless, it is straightforward
to adapt the mechanism of input endorsers from the protocol of [KRDO17] to our setting and its
approximate Nash equilibrium analysis can be ported directly.

2 Preliminaries

We say a function negl(x) is negligible if for every c > 0, there exists an n > 0 such that
negl(x) < 1/xc for all x ≥ n. The length of a string w is denoted by |w|; ε denotes the empty string.
We let v ‖w denote concatenation of strings.

2.1 Transaction Ledger Properties

We adopt the same definitions for transaction ledger properties as [KRDO17]. A protocol Π
implements a robust transaction ledger provided that the ledger that Π maintains is divided into
“blocks” (assigned to time slots) that determine the order with which transactions are incorporated
in the ledger. It should also satisfy the following two properties.

Persistence. Once a node of the system proclaims a certain transaction tx as stable, the remaining
nodes, if queried, will either report tx in the same position in the ledger or will not report
as stable any transaction in conflict to tx. Here the notion of stability is a predicate that is
parameterized by a security parameter k; specifically, a transaction is declared stable if and
only if it is in a block that is more than k blocks deep in the ledger.

Liveness. If all honest nodes in the system attempt to include a certain transaction then, after
the passing of time corresponding to u slots (called the transaction confirmation time), all
nodes, if queried and responding honestly, will report the transaction as stable.

In [KP15,PSS17] it was shown that persistence and liveness can be derived from the following
three elementary properties provided that protocol Π derives the ledger from a data structure in
the form of a blockchain.

Common Prefix (CP); with parameters k ∈ N. The chains C1, C2 possessed by two honest

parties at the onset of the slots sl1 < sl2 are such that Cdk1 � C2, where Cdk1 denotes the chain
obtained by removing the last k blocks from C1, and � denotes the prefix relation.

Chain Quality (CQ); with parameters µ ∈ (0, 1] and k ∈ N. Consider any portion of length
at least k of the chain possessed by an honest party at the onset of a round; the ratio of blocks
originating from the adversary is at most 1− µ. We call µ the chain quality coefficient.

Chain Growth (CG); with parameters τ ∈ (0, 1], s ∈ N. Consider the chains C1, C2 possessed
by two honest parties at the onset of two slots sl1, sl2 with sl2 at least s slots ahead of sl1.
Then it holds that len(C2)− len(C1) ≥ τ · s. We call τ the speed coefficient.

2.2 The Semi-Synchronous Model

On a high level, we consider the security model of [KRDO17] with simple modifications to account
for adversarially-controlled message delays and immediate adaptive corruption. Namely, we allow
the adversary A to selectively delay any messages sent by honest parties for up to ∆ ∈ N slots; and
corrupt parties without delay.
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Time and slots. We consider a setting where time is divided into discrete units called slots. A ledger,
described in more detail above, associates with each time slot (at most) one ledger block. Players
are equipped with (roughly synchronized) clocks that indicate the current slot. This will permit
them to carry out a distributed protocol intending to collectively assign a block to this current
slot. In general, each slot slr is indexed by an integer r ∈ {1, 2, . . .}, and we assume that the real
time window that corresponds to each slot has the following two properties: (1) The current slot is
determined by a publicly-known and monotonically increasing function of current time. (2) Each
player has access to the current time. Any discrepancies between parties’ local time are insignificant
in comparison with the length of time represented by a slot.

Security Model. We adopt the model introduced by [GKL15] for analysing security of blockchain
protocols enhanced with an ideal functionality F . We note that multiple different “functionalities”
can be encompassed by F . In our model we employ the “Delayed Diffuse” functionality, which
allows for adversarially-controlled delayed delivery of messages diffused among stakeholders.

The Diffuse Functionality. This functionality is parameterized by ∆ ∈ N and denoted as DDiffuse∆.
It keeps rounds, executing one round per slot. DDiffuse∆ interacts with the environment Z, stake-
holders U1, . . . , Un and an adversary A, working as follows for each round:

1. DDiffuse∆ maintains an incoming string for each party Ui that participates. A party, if activated,
is allowed at any moment to fetch the contents of its incoming string, hence one may think of
this as a mailbox. Furthermore, parties can give an instruction to the functionality to diffuse a
message. Activated parties are allowed to diffuse once in a round.

2. When the adversary A is activated, it is allowed to: (a) Read all inboxes and all diffuse requests
and deliver messages to the inboxes in any order it prefers; (b) For any message m obtained via
a diffuse request and any party Ui, A may move m into a special string delayedi instead of the
inbox of Ui. A can decide this individually for each message and each party; (c) For any party
Ui, A can move any message from the string delayedi to the inbox of Ui.

3. At the end of each round, the functionality also ensures that every message that was either (a)
diffused in this round and not put to the string delayedi or (b) removed from the string delayedi
in this round is delivered to the inbox of party Ui. If any message currently present in delayedi
was originally diffused at least ∆ slots ago, then the functionality removes it from delayedi and
appends it to the inbox of party Ui.

4. Upon receiving (Create, U, C) from the environment, the functionality spawns a new stakeholder
with chain C as its initial local chain (as it was the case in [KRDO17]).

Modelling Protocol Execution and Adaptive Corruptions. Given the above we will assume that the
execution of the protocol is with respect to a functionality F that incorporates DDiffuse as well
as possibly additional functionalities to be explained in the following sections. The environment
issues transactions on behalf of any stakeholder Ui by requesting a signature on the transaction as
described in Protocol πSPoS of Figure 4 and handing the transaction to stakeholders to put them
into blocks. Beyond any restrictions imposed by F , the adversary can only corrupt a stakeholder
Ui if it is given permission by the environment Z running the protocol execution. The permission
is in the form of a message (Corrupt, Ui) which is provided to the adversary by the environment.
Upon receiving permission from the environment, the adversary immediately corrupts Ui without
any delay, differently from [KRDO17,DPS16], where corruptions only take place after a given delay.
Note that a corrupted stakeholder Ui will relinquish its entire state to A; from this point on,
the adversary will be activated in place of the stakeholder Ui. The adversary is able to control
transactions and blocks generated by corrupted parties by interacting with FDSIG,FKES and FVRF, as
described in Protocol πSPoS of Section 3. In summary, regarding activations we have the following:
(a) At each slot slj , the environment Z activates all honest stakeholders.3 (b) The adversary is
activated at least as the last entity in each slj (as well as during all adversarial party activations
and invocations from the ideal functionalities as prescribed); (c) If a stakeholder does not fetch in
a certain slot the messages written to its incoming string from the diffuse functionality they are
flushed.
3 We assume this to simplify our formal treatment, a variant of our protocol can actually accomodate “lazy

honesty” as introduced in [Mic16]. In this variant, honest stakeholders only come online at the beginning
of each epoch and at a few infrequent, predictable moments, see Appendix H.
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Restrictions imposed on the environment. It is easy to see that the model above confers such
sweeping power on the adversary that one cannot establish any significant guarantees on protocols
of interest. It is thus important to restrict the environment suitably (taking into account the
details of the protocol) so that we may be able to argue security. We require that in every slot, the
adversary does not control more than 50% of the stake in the view of any honest stakeholder. If this

is violated, an event Bad
1
2 becomes true for the given execution. When the environment spawns a

new stakeholder by sending message (Create, U, C) to the Key and Transaction functionality, the
initial local chain C can be the chain of any honest stakeholder even in the case of “lazy honest”
stakeholders as described in Appendix H, without requiring this stakeholder to have been online
in the past slot as in [KRDO17]. Finally, we note that in all our proofs, whenever we say that a

property Q holds with high probability over all executions, we will in fact argue that Q ∨ Bad
1
2

holds with high probability over all executions. This captures the fact that we exclude environments

and adversaries that trigger Bad
1
2 with non-negligible probability.

Random Oracle. We also assume the availability of a random oracle. As usually, this is a function
H : {0, 1}∗ → {0, 1}w available to all parties that answers every fresh query with an independent,
uniformly random string from {0, 1}w, while any repeated queries are answered consistently.

Erasures. We assume that honest users can do secure erasures, which is argued to be a reasonable
assumption in protocols with security against adaptive adversaries, see e.g., [Lin09].

3 The Static Stake Protocol

We first consider the static stake case, where the stake distribution is fixed throughout protocol
execution. The general structure of the protocol in the semi-synchronous model is similar to that
of (synchronous) Ouroboros [KRDO17] but introduces several fundamental modifications to the
leader selection process: not all slots will be attributed a slot leader, some slots might have multiple
slot leaders, and slot leaders’ identities remain unknown until they act. The first modification is
used to deal with delays in the semi-synchronous network as the empty slots—where no block is
generated—assist the honest parties to synchronize. The last modification is used to deal with
adaptive corruptions, as it prevents the adversary from learning the slot leaders’ identity ahead
of time and using this knowledge to strategically corrupt coalitions of parties with large (future)
influence. Moreover, instead of using concrete instantiations of the necessary building blocks, we
describe the protocol with respect to ideal functionalities, which we later realize with concrete
constructions. This difference allows us to reason about security in the ideal model through a
combinatorial argument without having to deal with the probability that the cryptographic building
blocks fail. Before describing the specifics of the new leader selection process and the new protocol, we
first formally define the static stake scenario and introduce basic definitions as stated in [KRDO17]
following the notation of [GKL15].

In the static stake case, we assume that a fixed collection of n stakeholders U1, . . . , Un interact
throughout the protocol. Stakeholder Ui is attributed stake si at the beginning of the protocol.

Definition 1 (Genesis Block). The genesis block B0 contains the list of stakeholders identified
by a label Ui, their respective public keys and respective stakes

S0 =
(

(U1, v
vrf
1 , vkes1 , vdsig1 , s1), . . . , (Un, v

vrf
n , vkesn , vdsign , sn)

)
,

and a nonce η.

We note that the nonce η will be used to seed the slot leader election process and that
vvrfi , vkesi , vdsigi will be determined by FVRF, FKES and FDSIG, respectively.

Definition 2 (State, Block Proof, Block, Blockchain, Epoch). A state is a string st ∈
{0, 1}λ. A block proof is a value (or set of values) Bπ containing information that allows stakeholders
to verify if a block is valid. A block B = (slj , st, d, Bπj , σj) generated at a slot slj ∈ {sl1, . . . , slR}
contains the current state st ∈ {0, 1}λ, data d ∈ {0, 1}∗, the slot number slj, a block proof Bπj
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and σj, a signature on (st, d, slj , Bπj) under the signing key for the time period of slot slj of the
stakeholder Ui generating the block.

A blockchain (or simply chain) relative to the genesis block B0 is a sequence of blocks B1, . . . , Bn
associated with a strictly increasing sequence of slots for which the state sti of Bi is equal to H(Bi−1),
where H is a prescribed collision-resistant hash function. The length of a chain len(C) = n is its
number of blocks. The block Bn is the head of the chain, denoted head(C). We treat the empty
string ε as a legal chain and by convention set head(ε) = ε. Let C be a chain of length n and k be
any non-negative integer. We denote by Cdk the chain resulting from removal of the k rightmost
blocks of C. If k ≥ len(C) we define Cdk = ε. We let C1 � C2 indicate that the chain C1 is a prefix of
the chain C2.

An epoch is a set of R adjacent slots S = {sl1, . . . , slR}. (The value R is a parameter of the
protocol we analyze in this section.)

We consider as valid blocks that are generated by a stakeholder in the slot leader set of the slot
to which the block is attributed. Later in Section 3.3 we discuss slot leader sets and how they are
selected.

Definition 3 (Absolute and Relative Stake). Let UP , UA and UH denote the sets of all
stakeholders, the set of stakeholders controlled by an adversary A, and the remaining (honest)
stakeholders, respectively. For any party (resp. set of parties) X we denote by s+X (resp. s−X) the
maximum (resp. minimum) absolute stake controlled by X in the view of all honest stakeholders
at a given slot, and by α+

X , s+X/sP and α−X , s−X/sP its relative stake taken as maximum and
minimum respectively across of the view of all honest stakeholders. For simplicity, we use ssX , α

s
X

instead of sUX , αUX for all X ∈ {P,A,H}, s ∈ {+,−}. We also call αA , α+
A and αH , α−H the

adversarial stake ratio and honest stake ratio, respectively.

3.1 Forward Secure Signatures and FKES

In regular digital signature schemes, an adversary who compromises the signing key of a user can
generate signatures for any messages it wishes, including messages that were (or should have been)
generated in the past. Forward secure signature schemes [BM99] prevent such an adversary from
generating signatures for messages that were issued in the past, or rather allows honest users to
verify that a given signature was generated at a certain point in time. Basically, such security
guarantees are achieved by “evolving” the signing key after each signature is generated and erasing
the previous key in such a way that the actual signing key used for signing a message in the past
cannot be recovered but a fresh signing key can still be linked to the previous one. This notion
is formalized through key evolving signature schemes, which allow signing keys to be evolved into
fresh keys for a number of time periods. We remark that efficient constructions of key evolving
signature schemes with forward security exist [IR01] but no previous work has fully specified them
in the UC setting. Previous (game-based) definitions are presented in Appendix A.3.

We present a UC definition of the type of key-evolving signatures that we will take advantage of
in our constructions. FKES allows us to achieve forward security with erasures (i.e., assuming that
parties securely delete old signing keys as the protocol proceeds). This functionality embodies ideal
key evolving signature schemes allowing an adversary that corrupts the signer to forge signatures
only under the current and future signing keys, but not under a previous signing key that has
been updated. Our starting point for FKES is the standard digital signature functionality defined in
[Can04] with the difference that packs together with the signing operation a key-evolving operation.
During verification, FKES lets the adversary set the response to a verification query (taking as
input a given time period) only if no key update has been performed since that time period and no
entry exists in its internal table for the specific message, signature and time period specified in the
query. We present FKES in Figure 1. In Appendix B, we will show that FKES can be realized by a
construction based on key evolving signature schemes as defined in Appendix A.3.

Theorem 1. The πKES construction presented in Appendix B, realizes FKES with erasures assuming
KES = (Gen,Sign,Verify,Update) is a key evolving signature scheme with forward security as per
Definition 15 and Definition 17.
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Functionality FKES

FKES is parameterized by the total number of signature updates T , interacting with a signer US and
stakeholders Ui as follows:

– Key Generation. Upon receiving a message (KeyGen, sid, US) from a stakeholder US , send
(KeyGen, sid, US) to the adversary. Upon receiving (VerificationKey, sid, US , v) from the adversary,
send (VerificationKey, sid, v) to US , record the triple (sid, US , v) and set counter kctr = 1.

– Sign and Update. Upon receiving a message (USign, sid, US ,m, j) from US , verify that (sid, US , v)
is recorded for some sid and that kctr ≤ j ≤ T . If not, then ignore the request. Else, set kctr = j + 1
and send (Sign, sid, US ,m, j) to the adversary. Upon receiving (Signature, sid, US ,m, j, σ) from the
adversary, verify that no entry (m, j, σ, v, 0) is recorded. If it is, then output an error message to
US and halt. Else, send (Signature, sid,m, j, σ) to US , and record the entry (m, j, σ, v, 1).

– Signature Verification. Upon receiving a message (Verify, sid,m, j, σ, v′) from some stakeholder
Ui do:
1. If v′ = v and the entry (m, j, σ, v, 1) is recorded, then set f = 1. (This condition guarantees

completeness: If the verification key v′ is the registered one and σ is a legitimately generated
signature for m, then the verification succeeds.)

2. Else, if v′ = v, the signer is not corrupted, and no entry (m, j, σ′, v, 1) for any σ′ is recorded,
then set f = 0 and record the entry (m, j, σ, v, 0). (This condition guarantees unforgeability: If
v′ is the registered one, the signer is not corrupted, and never signed m, then the verification
fails.)

3. Else, if there is an entry (m, j, σ, v′, f ′) recorded, then let f = f ′. (This condition guarantees
consistency: All verification requests with identical parameters will result in the same answer.)

4. Else, if j < kctr, let f = 0 and record the entry (m, j, σ, v, 0). Otherwise, if j = kctr, hand
(Verify, sid,m, j, σ, v′) to the adversary. Upon receiving (Verified, sid,m, j, φ) from the adversary
let f = φ and record the entry (m, j, σ, v′, φ). (This condition guarantees that the adversary
is only able to forge signatures under keys belonging to corrupted parties for time periods
corresponding to the current or future slots.)

Output (Verified, sid,m, j, f) to Ui.

Fig. 1: Functionality FKES.

3.2 UC-VRFs with Unpredictability Under Malicious Key Generation

The usual pseudorandomness definition for VRFs (as stated in Appendix A.1, Definition 14) captures
the fact that an attacker, seeing a number of VRF outputs and proofs for adversarially chosen
inputs under a key pair that is correctly generated by a challenger, cannot distinguish the output
of the VRF on a new (also adversarially chosen) input from a truly random string. This definition
is too weak for our purposes for two reasons: first, we need a simulation-based definition so that
the VRF can be composed directly within our protocol; second, we need the primitive to provide
some level of unpredictability even under malicious key generation, i.e., against adversaries who
are allowed to generate the secret and pubic key pair.

Our UC formulation of VRFs cannot be implied by the standard VRF security definition or
even the simulatable VRF notion of [CL07]. For instance, the VRF proofs in our setting have to be
simulatable without knowlege of the VRF output (which is critical as we would like to ensure that
the VRF output is not leaked to the adversary prematurely); it is easy to construct a VRF that is
secure in the standard definition, but it is impossible to simulate its proofs without knowledge of
the VRF output. Furthermore, if the adversary is allowed to generate its own key pair it is easy
to see that the distribution of the VRF outputs cannot be guaranteed. Indeed, even for known
constructions (e.g. [DY05]), an adversary that maliciously generates keys can easily and significantly
skew the output distribution.

We call the latter property unpredictability under malicious key generation and we present,
in Figure 2, a UC definition for VRF’s that captures this stronger security requirement.4 The
functionality operates as follows. Given a key generation request from one of the stakeholders,

4 In fact our UC formulation captures a stronger notion: even for adversarial keys the VRF function will
act as a random oracle. We note that while we can achieve this notion in the random oracle model, a
weaker condition of mere unpredictability can be sufficient for the security of our protocol. A UC version
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it returns a new verification key v that is used to label a table. Two methods are provided for
computing VRF values. The first provides just the VRF output and does not interact with the
adversary. In the second, whenever invoked on an input m that is not asked before by a stakeholder
that is associated to a certain table labeled by v, the functionality will query the adversary for
the value of the proof π, and subsequently sample a random element ρ to associate with m.
Verification is always consistent and will validate outputs that have already being inserted in a
table. Unpredictability against malicious key generation is captured by imposing the same random
selection of outputs even for the function tables that correspond to keys of corrupted stakeholders.
Finally, the adversary is allowed to query all function tables maintained by the functionality for
which either a proof has been computed, or they correspond to adversarial keys. In Appendix C,
we show how to realize FVRF in the random oracle model under the CDH assumption based on the
2-Hash-DH verifiable oblivious PRF construction of [JKK14].

Functionality FVRF.

FVRF interacts with stakeholders U1, . . . , Un as follows:
– Key Generation. Upon receiving a message (KeyGen, sid) from a stakeholder Ui, hand

(KeyGen, sid, Ui) to the adversary. Upon receiving (VerificationKey, sid, Ui, v) from the adversary,
if Ui is honest, verify that v is unique, record the pair (Ui, v) and return (VerificationKey, sid, v) to
Ui. Initialize the table T (v, ·) to empty.

– Malicious Key Generation. Upon receiving a message (KeyGen, sid, v) from S, verify that v
has not being recorded before; in this case initialize table T (v, ·) to empty and record the pair
(S, v).

– VRF Evaluation. Upon receiving a message (Eval, sid,m) from Ui, verify that some pair (Ui, v)
is recorded. If not, then ignore the request. Then, if the value T (v,m) is undefined, pick a random
value y from {0, 1}`VRF and set T (v,m) = (y, ∅). Then output (Evaluated, sid, y) to P , where y is
such that T (v,m) = (y, S) for some S.

– VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid,m) from Ui, verify that
some pair (Ui, v) is recorded. If not, then ignore the request. Else, send (EvalProve, sid, Ui,m) to
the adversary. Upon receiving (Eval, sid,m, π) from the adversary, if value T (v,m) is undefined,
verify that π is unique, pick a random value y from {0, 1}`VRF and set T (v,m) = (y, {π}). Else, if
T (v,m) = (y, S), set T (v,m) = (y, S ∪ {π}). In any case, output (Evaluated, sid, y, π) to P .

– Malicious VRF Evaluation. Upon receiving a message (Eval, sid, v,m) from S for some v, do
the following. First, if (S, v) is recorded and T (v,m) is undefined, then choose a random value
y from {0, 1}`VRF and set T (v,m) = (y, ∅). Then, if T (v,m) = (y, S) for some S 6= ∅, output
(Evaluated, sid, y) to S, else ignore the request.

– Verification. Upon receiving a message (Verify, sid,m, y, π, v′) from some party P , send
(Verify, sid,m, y, π, v′) to the adversary. Upon receiving (Verified, sid,m, y, π, v′) from the adversary
do:
1. If v′ = v for some (Ui, v) and the entry T (Ui,m) equals (y, S) with π ∈ S, then set f = 1.
2. Else, if v′ = v for some (Ui, v), but no entry T (Ui,m) of the form (y, {. . . , π, . . .}) is recorded,

then set f = 0.
3. Else, initialize the table T (v′, ·) to empty, and set f = 0.

Output (Verified, sid,m, y, π, f) to P .

Fig. 2: Functionality FVRF.

Theorem 2. The 2Hash-DH construction presented in Appendix C, realizes FVRF in the random
oracle model assuming the CDH.

3.3 Oblivious Leader Selection and FINIT

As in (synchronous) Ouroboros, for each 0 < j ≤ R, a slot leader Ej is a stakeholder who is elected
to generate a block at slj . However, our leader selection process differs from Ouroboros [KRDO17]

of the notion of verifiable pseudorandom permutations, cf. [DP07], could potentially be used towards a
standard model instantiation of the primitive.
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in three points: (1) potentially, multiple slot leaders may be elected for a particular slot (forming a
slot leader set); (2) frequently, slots will have no leaders assigned to them; and (3) a priori, only a
slot leader is aware that it is indeed a leader for a given slot; this assignment is unknown to all
the other stakeholders—including other slot leaders of the same slot—until the other stakeholders
receive a valid block from this slot leader. The combinatorial analysis presented in Section 4 shows
(with an honest stake majority) that (i.) blockchains generated according to these dynamics are
well-behaved even if multiple slot leaders are selected for a slot and that (ii.) sequences of slots
with no leader provide sufficient stability for honest stakeholders to effectively synchronize. As a
matter of terminology, we call slots with an associated nonempty slot leader set active slots and
slots that are not assigned a slot leader empty slots.

Functionality FINIT

FINIT incorporates the delayed diffuse functionality from Section 2.2 and is parameterized by the
number of initial stakeholders n and their respective stakes s1, . . . , sn. FINIT interacts with stakeholders
U1, . . . , Un as follows:

– In the first round, upon a request from some stakeholder Ui of the form
(ver keys, sid, Ui, v

vrf
i , vkesi , vdsigi ), it stores the verification keys tuple (Ui, v

vrf
i , vkesi , vdsigi )

and acknowledges its receipt. If any of the n stakeholders does not send a request of this form

to FINIT, it halts. Otherwise, it samples and stores a random value η
$← {0, 1}λ and constructs a

genesis block (S0, η), where S0 =
(

(U1, v
vrf
1 , vkes1 , vdsig1 , s1), . . . , (Un, v

vrf
n , vkesn , vdsign , sn)

)
.

– In later rounds, upon a request of the form (genblock req, sid, Ui) from some stakeholder Ui, FINIT

sends (genblock, sid, S0, η) to Ui.

Fig. 3: Functionality FINIT.

The idealized slot leader assignment and the active slots coefficient. The fundamental leader
assignment process calls for a stakeholder Ui to be independently selected as a leader for a particular
slot slj with probability pi depending only on its relative stake. (In this static-stake analysis, relative
stake is simply determined by the genesis block B0.) The exact relationship between pi and the
relative stake αi is determined by a parameter f of the protocol which we refer to as the active
slots coefficient. Specifically,

pi = φf (αi) , 1− (1− f)αi , (1)

where αi is the relative stake held by stakeholder Ui. We occasionally drop the subscript f and write
φ(αi) when f can be inferred from context. As the events “Ui is a leader for slj” are independent,
this process may indeed generate multiple (or zero) leaders for a given slot.

Remarks about φf (·). Observe that φf (1) = f ; in particular, the parameter f is the probability
that a party holding all the stake will be selected to be a leader for given slot. On the other hand,
φf () is not linear, but slightly concave; see Figure 7. To motivate the choice of the function φf , we
note that it satisfies the “independent aggregation” property:

1− φ

(∑
i

αi

)
=
∏
i

(1− φ(αi)) . (2)

In particular, when leadership is determined according to φf , the probability of a stakeholder
becoming a slot leader in a particular slot is independent of whether this stakeholder acts as a single
party in the protocol, or splits its stake among several “virtual” parties. In particular, consider
a party U with relative stake α who contrives to split its stake among two virtual subordinate
parties with stakes α1 and α2 (so that α1 + α2 = α). Then the probability that one of these virtual
parties is elected for a particular slot is 1− (1− φ(α1))(1− φ(α2)), as these events are independent.
Property (2) guarantees that this is identical to φ(α). Thus this selection rule is invariant under
arbitrary reapportionment of a party’s stake among virtual parties.

10



3.4 The Protocol in the FINIT-hybrid Model

We will construct our protocol for the static stake case in the FINIT-hybrid model, where the genesis
stake distribution S0 and the nonce η (to be written in the genesis block B0) are determined by
the ideal functionality FINIT defined in Figure 3. Moreover, FINIT also incorporates the diffuse
functionality from Section 2.2, which is implicitly used by all parties to send messages and keep
synchronized with a global clock. FINIT also takes stakeholders’ public keys from them and packages
them into the genesis block at the outset of the protocol. Blocks are signed with a forward secure
signature scheme modelled by FKES, while transactions are signed with a regular EUF-CMA secure
digital signature modelled by FDSIG (described in Appendix A). For simplicity, transactions are
assumed to be simple assertions of the form “Stakeholder Ui transfers stake s to Stakeholder
(Uj , v

vrf
j , vkesj , vdsigj )” (In an implementation the different public-keys can be hashed into a single

value). Protocol πSPoS ensures that the environment learns every stakeholder’s public keys and
provides an interface for the environment to request signatures on arbitrary transactions.

Notice that the implicit leader assignment process described in πSPoS calls for a party Ui to act
as a leader for a slot slj when y < Ti; this is an event that occurs with probability (exponentially
close to) φf (αi) as y is uniform according to the functionality FVRF. The stakeholders U1, . . . , Un
interact among themselves and with FINIT through Protocol πSPoS described in Figure 4. The
protocol relies on a maxvalidS(C,C) function that chooses a chain given the current chain C and
a set of valid chains C that are available in the network. In the static stake case we analyze the
simple “longest chain” rule.

Function maxvalid(C,C): Returns the longest chain from C ∪ {C}. Ties are broken in favor
of C, if it has maximum length, or arbitrarily otherwise.

4 Combinatorial Analysis of the Static Stake Protocol

Throughout this section, we focus solely on analysis of the protocol πSPoS using the idealized
functionalities FVRF and FKES for VRFs and digital signatures, respectively—we refer to it as the
hybrid experiment. As argued in Theorems 1 and 2, any property of the protocol that we prove true
in the hybrid experiment (such as achieving common prefix, chain growth and chain quality) will
remain true (with overwhelming probability) in the setting where FVRF and FKES are replaced by
their real-world implementations—in the so-called real experiment.

The hybrid experiment yields a stochastic process for assigning slots to parties which we now
abstract and study in detail. Our analysis of the resulting blockchain dynamics proceeds roughly as
follows: We begin by generalizing the framework of “forks” [KRDO17] to our semi-synchronous
setting—forks are a natural bookkeeping tool that reflect the chains possessed by honest players
during an execution of the protocol. We then establish a simulation rule that associates with each
execution of the semi-synchronous protocol an execution of a related “virtual” synchronous protocol.
Motivated by the special case of a static adversary—which simply corrupts a family of parties at the
outset of the protocol—we identify a natural “generic” probability distribution for this simulation
theorem which we prove controls the behavior of adaptive adversaries by stochastic domination.
Finally, we prove that this simulation amplifies the effective power of the adversary in a controlled
fashion and, furthermore, permits forks of the semi-synchronous protocol to be projected to forks
of the virtual protocol in a way that preserves their relevant combinatorial properties. This allows
us to apply the density theorems and divergence result of [KRDO17,RMKQ17] to provide strong
common prefix, chain growth, and chain quality (4.4) guarantees for the semi-synchronous protocol
with respect to an adaptive adversary.

We begin in Section 4.1 with a discussion of characteristic strings, semi-synchronous forks,
and their relationship to executions of πSPoS in the hybrid experiment. Section 4.2 then develops
the combinatorial reduction from the semi-synchronous to the synchronous setting. The “generic,
dominant” distribution on characteristic strings is then motivated and defined in Section 4.3, where
the effect of the reduction on this distribution is also described. Section 4.4, as described above,
establishes various guarantees on the resulting blockchain under the dominant distribution. The full
power of adaptive adversaries is considered in Section 4.5. Finally, in preparation for applying the
protocol in the dynamic stake setting, we formulate a “resettable setting” which further enlarges the
power of the adversary by providing some control over the random nonce that seeds the protocol.

11



Protocol πSPoS

The protocol πSPoS is run by stakeholders U1, . . . , Un interacting among themselves and with ideal
functionalities FINIT,FVRF,FKES,FDSIG,H over a sequence of slots S = {sl1, . . . , slR}. Define Ti ,
2`VRFφf (αi) as the threshold for a stakeholder Ui, where αi is the relative stake of Ui, `VRF denotes the
output length of FVRF, f is the active slots coefficient and φf is the mapping from Definition 1. Then
πSPoS proceeds as follows:
1. Initialization. The stakeholder Ui sends (KeyGen, sid, Ui) to FVRF, FKES and FDSIG; receiving

(VerificationKey, sid, vvrfi ), (VerificationKey, sid, vkesi ) and (VerificationKey, sid, vdsigi ), respectively.
Then, in case it is the first round, it sends (ver keys, sid, Ui, v

vrf
i , vkesi , vdsigi ) to FINIT (to claim stake

from the genesis block). In any case, it terminates the round by returning (Ui, v
vrf
i , vkesi , vdsigi ) to

Z. In the next round, it sends (genblock req, sid, Ui) to FINIT, receiving (genblock, sid, S0, η) as the
answer. If Ui is initialized in the first round, it sets the local blockchain C = B0 = (S0, η) and its
initial internal state st = H(B0). In case Ui is initialized after the first round, it sets its initial
state to st = H(head(C)) where C is the initial local chain provided by the environment.

2. Chain Extension. After initialization, for every slot slj ∈ S, every online stakeholder Ui performs
the following steps:
(a) Ui receives from the environment the transaction data d ∈ {0, 1}∗ to be inserted into the

blockchain.
(b) Ui collects all valid chains received via diffusion into a set C, pruning blocks belong-

ing to future slots and verifying that for every chain C′ ∈ C and every block B′ =
(st′, d′, sl′, Bπ

′, σj′) ∈ C′ it holds that the stakeholder who created it is in the slot leader
set of slot sl′ (by parsing Bπ

′ as (Us, y
′, π′) for some s, verifying that FVRF responds to

(Verify, sid, η ‖ sl′, y′, π′, vvrfs ) by (Verified, sid, η ‖ sl′, y′, π′, 1), and that y′ < Ts), and that FKES

responds to (Verify, sid, (st′, d′, sl′, Bπ
′), sl′, σj′ , v

kes
s ) by (Verified, sid, (st′, d′, sl′, Bπ

′), sl′, 1).
Ui computes C′ = maxvalid(C,C), sets C′ as the new local chain and sets state st = H(head(C′)).

(c) Ui sends (EvalProve, sid, η ‖ slj) to FVRF, receiving (Evaluated, sid, y, π). Ui checks whether
it is in the slot leader set of slot slj by checking that y < Ti. If yes, it generates a new
block B = (st, d, slj , Bπ, σ) where st is its current state, d ∈ {0, 1}∗ is the transaction data,
Bπ = (Ui, y, π) and σ is a signature obtained by sending (USign, sid, Ui, (st, d, slj , Bπ), slj) to
FKES and receiving (Signature, sid, (st, d, slj , Bπ), slj , σ). Ui computes C′ = C|B, sets C′ as the
new local chain and sets state st = H(head(C′)). Finally, if Ui has generated a block in this
step, it diffuses C′.

3. Signing Transactions. Upon receiving (sign tx, sid′, tx) from the environment, Ui sends
(Sign, sid, Ui, tx) to FDSIG, receiving (Signature, sid, tx, σ). Then, Ui sends (signed tx, sid′, tx, σ)
back to the environment.

Fig. 4: Protocol πSPoS.

4.1 Chains, Forks and Divergence

We begin by suitably generalizing the framework of characteristic strings, forks, and divergence
developed in [KRDO17] to our semi-synchronous setting.

The leader assignment process given by protocol πSPoS in the hybrid experiment assigns leaders
to slots with the following guarantees: (i.) a party with relative stake α becomes a slot leader for
a given slot with probability φf (α) , 1 − (1 − f)α; (ii.) the event of becoming a slot leader is
independent for each party and for each slot (both points follow from the construction of πSPoS and
the independent random sampling of every new output in FVRF). Clearly, these dynamics may lead
to slots with multiple slot leaders and, likewise, slots with no slot leader. For a given (adaptive)
adversary A and environment Z, we reflect the outcome of this process with a characteristic string,
as described below.

Definition 4 (Execution). For an (adaptive) adversary A and an environment Z, an execution
E of πSPoS is a transcript including the inputs provided by Z, the random coins of the parties, the
random coins of the adversary, the responses of the ideal functionalities and the random oracle.
This data determines the entire dynamics of the protocol: messages sent and delivered, the internal
states of the parties at each step, the set of corrupt parties at each step, etc.

Definition 5 (Characteristic string). Let S = {sl1, . . . , slR} be a sequence of slots of length R
and E be an execution (with adversary A and environment Z). For a slot slj, let P(j) denote the
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set of parties assigned to be slot leaders for slot j by the protocol πSPoS (specifically, those parties Ui
for which y < 2`VRFφf (αi), where (y, π)← ProveVRF.ski(η ‖ slj)). We define the characteristic string
w ∈ {0, 1,⊥}R of S to be the random variable so that

wj =


⊥ if P(j) = ∅,
0 if |P(j)| = 1 and the assigned party is honest,

1 if |P(j)| > 1 or a party in P(i) is adversarial.

(3)

For such a characteristic string w ∈ {0, 1,⊥}∗ we say that the index j is uniquely honest if wj = 0,
tainted if wj = 1, and empty if wj = ⊥. We say that an index is active if wj ∈ {0, 1}. Note that
an index is “tainted” according to this terminology in cases where multiple honest parties (and no
adversarial party) have been assigned to it.

We denote by DfZ,A the distribution of the random variable w = w1 . . . wR in the hybrid
experiment with the active slots coefficient f , adversary A, and environment Z. For a fixed execution
E, we denote by wE the (fixed) characteristic string resulting from that execution.

We emphasize that in an execution of πSPoS, the resulting characteristic string is determined by
both the nonce (and the effective leader selection process), the adaptive adversary A, and the
environment Z (which, in particular, determines the stake distribution).

From executions to forks. The notion of a “fork”, defined in [KRDO17], is a bookkeeping tool
that indicates the chains broadcast by honest players during an idealized execution of a blockchain
protocol. We now adapt the synchronous notion of [KRDO17] to reflect the effect of message delays.

An execution of Protocol πSPoS induces a collection of blocks broadcast by the participants. As
we now focus merely on the structural properties of the resulting blockchain, for each broadcast
block we now retain only two features: the slot associated with the block and the previous block to
which it is “attached” by the idealized digital signature σj . (Of course, we only consider blocks
with legal structure that meet the verification criteria of πSPoS.) Note that multiple blocks may
be associated with a particular slot, either because multiple parties are assigned to the slot or an
adversarial party is assigned to a slot (who may choose to deviate from the protocol by issuing
multiple blocks). In any case, these blocks induce a natural directed tree by treating the blocks as
vertices and introducing a directed edge between each pair of blocks (b, b′) for which b′ identifies b
as the previous block. In the ∆-semisynchronous setting, the maxvalid rule enforces a further critical
property on this tree: the depth of any block broadcast by an honest player during the protocol
must exceed the depths of any honestly-generated blocks from slots at least ∆ in the past. (This
follows because such previously broadcast blocks would have been available to the honest player,
who always builds on a chain of maximal length.) We call a directed tree with these structural
properties a ∆-fork, and define them precisely below.

We may thus associate with any execution of πSPoS a fork. While this fork disregards many
of the details of the execution, any violations of common prefix are immediately manifested by
certain diverging paths in the fork. A fundamental element of our analysis relies on controlling
the structure of the forks that can be induced in this way for a given characteristic string (which
determines which slots have been assigned to uniquely honest parties). In particular, we prove that
common prefix violations are impossible for “typical” characteristic strings generated by πSPoS with
an adversary A by establishing that such diverging paths cannot exist in their associated forks.

Definition 6 (∆-fork). Let w ∈ {0, 1,⊥}k and ∆ be a non-negative integer. Let A = {i | wi 6= ⊥}
denote the set of active indices, and let H = {i | wi = 0} denote the set of uniquely honest indices. A
∆-fork for the string w is a directed, rooted tree F = (V,E) with a labeling ` : V → {0} ∪A so that
(i) the root r ∈ V is given the label `(r) = 0; (ii) each edge of F is directed away from the root;
(iii) the labels along any directed path are strictly increasing; (iv) each uniquely honest index i ∈ H
is the label of exactly one vertex of F ; (v) the function d : H → {1, . . . , k}, defined so that d(i) is
the depth in F of the unique vertex v for which `(v) = i, satisfies the following ∆-monotonicity
property: if i, j ∈ H and i+∆ < j, then d(i) < d(j).

As a matter of notation, we write F `∆ w to indicate that F is a ∆-fork for the string w. We
typically refer to a ∆-fork as simply a “fork”.
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Fig. 5: A (synchronous) fork F for the string w = 010100110. Vertices appear with their labels and
vertices belonging to (uniquely) honest slots are highlighted with double borders. Note that the
depths of the (honest) vertices associated with the honest indices of w are strictly increasing. Two
tines are distinguished in the figure: one, labeled t̂, terminates at the vertex labeled 9 and is the
longest tine in the fork; a second tine t terminates at the vertex labeled 3. The divergence of t and
t̂ is div(t, t̂) = 2.
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Fig. 6: A 3-fork F ′ for the characteristic string w = 0⊥1⊥01001⊥⊥10. Note that F ′ is not a 2-fork
since d(8) = 2 6> 2 = d(5). Indices {1, 5, 7, 8, 14} are uniquely honest, {3, 6, 12, 13} are tainted, and
{2, 4, 9, 10, 11} are empty. The index 8 is 4-right-isolated, but not 5-right-isolated.

See Figures 5 and 6 for examples of forks. Also note that our notion of a fork deliberately
models honest parties that do not exploit all the information available to them thanks to the
delivery guarantees provided by the DDiffuse functionality. In particular, an honest party that is
permanently online could (in our communication model) safely discard any (adversarial) blocks
that were not received in the correct time window.

Nonetheless, it remains true that any execution of the hybrid experiment leads to a fork as we
defined it, a relationship that we make fully formal in Appendix F. Given this relationship, we can
later focus on investigating the properties of the distribution DfZ,A. Roughly speaking, if we prove

that a characteristic string sampled from DfZ,A, with overwhelming probability, does not allow for
any “harmful” forks, then this also implies that a random execution with overwhelming probability
results in a “harmless” outcome.

Now we continue with the adaptation of the framework from [KRDO17] to the semi-synchronous
setting.

Definition 7 (Tines, length, and viability). A path in a fork F originating at the root is called
a tine. For a tine t we let length(t) denote its length, equal to the number of edges on the path.
For a vertex v, we call the length of the tine terminating at v the depth of v. For convenience,
we overload the notation `(·) so that it applies to tines by defining `(t) , `(v), where v is the
terminal vertex on the tine t. We say that a tine t is ∆-viable if length(t) ≥ maxh+∆≤`(t) d(h), this
maximum extended over all uniquely honest indices h (appearing ∆ or more slots before `(t)). Note
that any tine terminating in a uniquely honest vertex is necessarily viable by the ∆-monotonicity
property.

Remarks on viability and divergence. The notion of viability, defined above, demands that the
length of a tine t be no less than that of all tines broadcast by uniquely honest slot leaders prior to
slot `(t)−∆. Observe that such a tine could, in principle, be selected according to the maxvalid()
rule by an honest player online at time `(t): in particular, if all blocks broadcast by honest parties
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in slots `(t)−∆, . . . , `(t) are maximally delayed, the tine can favorably compete with all other tines
that the adversary is obligated to deliver by slot `(t). The major analytic challenge, both in the
synchronous case and in our semisynchronous setting, is to control the possibility of a common
prefix violation, which occurs when the adversary can manipulate the protocol to produce a fork
with two viable tines with a relatively short common prefix. We define this precisely by introducing
the notion of divergence.

Definition 8 (Divergence). Let F be a ∆-fork for a string w ∈ {0, 1,⊥}∗. For two ∆-viable
tines t1 and t2 of F , define their divergence to be the quantity

div(t1, t2) , min{length(t1), length(t2)} − length(t1 ∩ t2) ,

where t1 ∩ t2 denotes the common prefix of t1 and t2. We extend this notation to the fork F by
maximizing over viable tines: div∆(F ) , maxt1,t2 div(t1, t2), taken over all pairs of ∆-viable tines
of F . Finally, we define the ∆-divergence of a characteristic string w to be the maximum over all
∆-forks: div∆(w) , maxF `∆w div∆(F ).

Our primary goal in this section is to prove that, with high probability, the characteristic strings
induced by protocol πSPoS have small divergence and hence provide strong guarantees on common
prefix.

The Synchronous Case. The original development of [KRDO17] assumed a strictly synchronous
environment. Their definitions of characteristic string, fork, and divergence correspond to the case
∆ = 0, where characteristic strings are elements of {0, 1}∗. As this setting will play an important
role in our analysis—fulfilling the role of the “virtual protocol” described at the beginning of this
section—we set down some further terminology for this synchronous case and establish a relevant
combinatorial statement based on a result in [KRDO17] that we will need for our analysis.

Definition 9 (Synchronous characteristic strings and forks). A synchronous characteristic
string is an element of {0, 1}∗. A synchronous fork F for a (synchronous) characteristic string w
is a 0-fork F `0 w.

An immediate conclusion of the results obtained in [KRDO17,RMKQ17] is the following bound
on the probability that a synchronous characteristic string drawn from the binomial distribution
has large divergence.

Theorem 3. Let `, k ∈ N and ε ∈ (0, 1). Let w ∈ {0, 1}` be drawn according to the binomial
distribution, so that Pr[wi = 1] = (1− ε)/2. Then Pr[div0(w) ≥ k] ≤ exp(ln `−Ω(k)).

4.2 The Semisynchronous to Synchronous Reduction

We will make use of the following mapping, that maps characteristic strings to synchronous
characteristic strings.

Definition 10 (Reduction mapping). For ∆ ∈ N, we define the function ρ∆ : {0, 1,⊥}∗ →
{0, 1}∗ inductively as follows: ρ∆(ε) = ε, ρ∆(⊥‖w′) = ρ∆(w′),

ρ∆(1 ‖w′) = 1 ‖ ρ∆(w′),

ρ∆(0 ‖w′) =

{
0 ‖ ρ∆(w′) if w′ ∈ ⊥∆−1 ‖ {0, 1,⊥}∗,
1 ‖ ρ∆(w′) otherwise.

(4)

We call ρ∆ the reduction mapping for delay ∆.

A critical feature of the map ρ∆ is that it monotonically transforms ∆-divergence to synchronous
divergence. We state this in the following lemma.

Lemma 1. Let w ∈ {0, 1,⊥}∗. Then div∆(w) ≤ div0(ρ∆(w)).
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Proof. Let w ∈ {0, 1,⊥}∗ be a characteristic string with div∆(w) = k and let F `∆ w be a ∆-fork
with div∆(F ) = k. Let w′ = ρ∆(w); to prove that div0(w′) ≥ k, we construct a fork F ′ `0 w′ for
which div(F ′) ≥ k. Let A = {i | wi 6= ⊥} denote the set of active indices (as in Definition 6) and
note that |ρ∆(w)| = |A|; as noted above, each non-⊥ symbol of w corresponds to a unique symbol
in w′. We let π : A→ {1, . . . , |A|} be the (bijective, increasing) function which records the position
in w′ corresponding to a particular active index i in w. Finally, we define the fork F ′ as follows: as
a graph, F ′ has the same structure as F ; the labeling `′ (for F ′) is given by the rule `′(v) = π(`(v));
of course, `′(r) = 0 for the root vertex r.

To verify that F ′ `0 w′ = ρ∆(w), we recall the necessary properties from the definition. Properties
(i) and (ii) of the Definition 6 are immediate; property (iii) follows because π is strictly increasing.
For the remaining properties, we recall the definition of ρ∆: According the rule, wi = 1⇒ w′π(i) = 1

from which property (iv) follows immediately. It remains to check property (v). The value w′π(i)
when wi = 0 is determined by the ∆−1 following symbols of w: if wi+1 = wi+2 = · · · = wi+∆−1 = ⊥,
we say that i is ∆-right-isolated (cf. [GKL15], where a similar feature arises in a proof-of-work
setting) and in this case w′π(i) = 0; otherwise w′π(i) = 1. In particular, if w′π(i) = 0 we must have

wi = 0 and wi+s = ⊥ for 0 ≤ s < ∆. As we wish to conclude that F ′ is a synchronous fork, it must
satisfy the ∆-monotonicity property with ∆ = 0, which is to say that d(·) is strictly increasing
on the set of uniquely honest indices (of w′). However, in light of the discussion above, any two
uniquely honest indices of w′ must correspond to uniquely honest indices of w separated by at least
∆− 1 intervening ⊥ symbols; thus the ∆-monotonicity property of F ensures the 0-monotonicity
property of F ′, as desired.

In preparation for establishing that div0(F ′) ≥ div(F ) = k, we note that a ∆-viable tine t of
F `∆ w is 0-viable when viewed as a tine of F ′ ` w′. In particular, let h′ be a uniquely honest
index of w′ for which h′ ≤ `′(t) and let h be the uniquely honest index of w for which π(h) = h′.
As π(h) is uniquely honest in w′, h is ∆-right isolated in w, and we conclude that length(t) ≥ d(h),
because t is ∆-viable. This t is 0-viable in F ′.

Finally, let t1 and t2 be two ∆-viable tines of F for which div∆(t1, t2) = div∆(w). In light of
the discussion above, these tines are 0-viable in F ′; as the two forks have the structure as graphs,
we conclude that div0(w′) ≥ div∆(t1, t2) = div∆(w), as desired. ut

4.3 The Dominant Characteristic Distribution

The high-probability results for our desired chain properties depend on detailed information about
the distribution on characteristic strings DfZ,A determined by the adversary A, the environment Z,
and the parameters f and R. In this section we define a distinguished distribution on characteristic
strings which we will see “dominates” the distributions produced by any static adversary. Later in
Section 4.5 we show that the same is true also for adaptive adversaries. We then study the effect of
ρ∆ on this distribution in preparation for studying common prefix, chain growth, and chain quality.

Motivating the Dominant Distribution: Static Adversaries. To motivate the dominant
distribution, consider the distribution induced by a static adversary who corrupts—at the outset of
the protocol—a set UA of parties with total relative stake αA. (Formally, one can model this by
restricting to environments that only allow static corruption.) Recalling Definition 1, a party with
relative stake αi is independently assigned to be a leader for a slot with probability

φf (αi) , φ(αi) , 1− (1− f)αi .

The function φf is concave since

∂2φf
∂α2

(α) = −(ln(1− f))2(1− f)α < 0 ,

Figure 7 shows a plot of φ1/2 for illustration. Considering that φf (0) = 0 and φf (1) = f , concavity
implies that φf (α) ≥ fα for α ∈ [0, 1]. As φf (0) ≥ 0 and φf is concave, the function φf is
subadditive. This immediately implies the following proposition that will be useful during the
analysis.
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Fig. 7: The function φ1/2(α) = 1− (1/2)α and the linear function α 7→ α/2, for comparison. The
point (1, 1/2) is marked in solid black.

Proposition 1. The function φf (α) satisfies the following properties.

φf

(∑
i

αi

)
= 1−

∏
i

(1− φf (αi)) ≤
∑
i

φf (αi) , αi ≥ 0 , (5)

φf (α)

φf (1)
=
φf (α)

f
≥ α , α ∈ [0, 1] . (6)

Recalling Definition 5, this (static) adversary A determines a distribution DfZ,A on strings

w ∈ {0, 1,⊥}R by independently assigning each wi so that

pA⊥ , Pr[wi = ⊥] =
∏
i∈P

(1− φ(αi)) =
∏
i∈P

(1− f)αi = (1− f) ,

pA0 , Pr[wi = 0] =
∑
h∈H

(1− (1− f)αh) · (1− f)1−αi ,

pA1 , Pr[wi = 1] = 1− pA⊥ − pA0 .

(7)

Here H denotes the set of all honest parties in the stake distribution S determined by Z. As before,
P denotes the set of all parties.

It is convenient to work with some bounds on the above quantities that depend only on
“macroscopic” features of S and A: namely, the relative stake of the honest and adversarial parties,
and the parameter f . For this purpose we note that

pA0 ≥
∑
h∈H

φ(αh) ·
∏
i∈P

(1− φ(αi)) ≥ φ(αH) · pA⊥ = φ(αH) · (1− f) , (8)

where αH denotes the total relative stake of the honest parties. Note that this bound applies to all
static adversaries A that corrupt no more than a 1− αH fraction of all stake. With this in mind,
we define the dominant distribution as follows.

Definition 11 (The dominant distribution Dfα). For two parameters f and α, define Dfα to be
the distribution on strings w ∈ {0, 1,⊥}R that independently assigns each wi so that p⊥ , Pr[wi =
⊥] = 1− f , p0 , Pr[wi = 0] = φ(α) · (1− f), and p1 , Pr[wi = 1] = 1− p⊥ − p0.

The distribution Dfα “dominates” DfZ,A for any static adversary A that corrupts no more than a
relative 1−α share of the total stake, in the sense that nonempty slots are more likely to be tainted
under Dfα than they are under DfZ,A.

To make this relationship precise, we introduce the partial order � on the set {⊥, 0, 1} so
that x � y if and only if x = y or y = 1. We extend this partial order to {⊥, 0, 1}R by declaring
x1 . . . xR � y1 . . . yR if and only if xi � yi for each i. Intuitively, the relationship x ≺ y asserts that
y is “more adversarial than” x; concretely, any legal fork for x is also a legal fork for y. We record
this in the lemma below, which follows directly from the definition of ∆-fork and div∆.
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Lemma 2. Let x and y be characteristic strings in {0, 1,⊥}R for which x � y. Then 1.) for every
fork F , F `∆ x =⇒ F `∆ y; 2.) for every ∆, div∆(x) ≤ div∆(y).

Finally, we define a notion of stochastic dominance for distributions on characteristic strings,
and α-dominated adversaries.

Definition 12 (Stochastic dominance). We say that a subset E ⊆ {⊥, 0, 1}R is monotone if
x ∈ E and x � y implies that y ∈ E. Let D and D′ be two distributions on the set of characteristic
strings {⊥, 0, 1}R. Then we say that D′ dominates D, written D � D′, if PrD[E] ≤ PrD′ [E] for

every monotone set E. An adversary A is called α-dominated if the distribution DfZ,A that it induces

on the set of characteristic strings satisfies DfZ,A � Dfα.

In our application, the events of interest are D∆ = {x | div∆(x) ≥ k} which are monotone by
Lemma 2. We note that any static adversary that corrupts no more than a 1− α fraction of stake
is α-dominated, and it follows that PrDfZ,A

[div∆(w) ≥ k] ≤ PrDfα [div∆(w) ≥ k]. This motivates a

particular study of the “dominant” distribution Dfα.

The Induced Distribution ρ∆(Df
α). The dominant distribution Dfα on {0, 1,⊥}R in conjunction

with the definition of ρ∆ of (4) above implicitly defines a family of random variables ρ∆(w) =
x1 . . . x` ∈ {0, 1}∗, where w ∈ {0, 1,⊥}R is distributed according to Dfα. Observe that ` = R−#⊥(w)
is precisely the number of active indices of w. We now note a few properties of this resulting
distribution that will be useful to us later. In particular, we will see that the xi random variables
are roughly binomially distributed, but subject to an exotic stochastic “stopping time” condition in
tandem with some distortion of the last ∆ variables.

Lemma 3 (Structure of the induced distribution). Let x1 . . . x` = ρ∆(w) where w ∈ {0, 1,⊥}R
is distributed according to Dfα. There is a sequence of independent random variables z1, z2, . . . with
each zi ∈ {0, 1} so that

Pr[zi = 0] =

(
p0

p0 + p1

)
p∆−1⊥ ≥ α · (1− f)∆ , (9)

and x1 . . . x`−∆ = ρ∆(w1 . . . , wR)d∆ is a prefix of z1z2 . . . . (10)

(Note that while the zi are independent with each other, they are not independent with w.)

Proof. It simplifies our analysis to treat w as the first R symbols of an infinite string w1w2 . . .
of independent random variables with distribution given by Definition 11 above. (We use the
same name for this infinite sequence as it will cause no confusion.) The distribution of the infinite
sequence w can be given an alternative description as b0e1b1e2b2 . . ., where the (independent)
random variables ei ∈ {0, 1} and bi ∈ {⊥}∗ have the probability laws

ei =

{
0 with probability p0/(p0 + p1),

1 with probability p1/(p0 + p1),

and bi = ⊥t with probability pt⊥(1 − p⊥). In this description, the random variables bi generate
the contiguous sequences of ⊥ symbols that appear between appearances of 0 and 1. Now we
observe that z1z2 . . . = ρ∆(b0e1b1 . . .)—which we temporarily treat as operating on an infinite
sequence—has an immediate description in terms of the xi, bi random variables:

zi =

{
1 if ei = 1 or |bi| < ∆− 1,

0 if ei = 0 and |bi| ≥ ∆− 1.

It follows that the variables zi ∈ {0, 1} are independent and binomially distributed, with the
property that

Pr[zi = 0] =

(
p0

p0 + p1

)
p∆−1⊥ =

φ(α)

f
· (1− f)∆

(6)

≥ α · (1− f)∆ , (11)
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where
(i)

≥ follows from equation (i) and we use the equality p0 + p1 = 1− p⊥.
In our setting, the reduction function ρ∆(·) is applied to a prefix of the string w of finite length

R. In fact, the resulting “stopping criteria” on the random variables z1, z2, . . . can both introduce
correlations and distort the coordinatewise distribution. However, we note that ρ∆(w1 . . . wR)
produces a prefix of the sequence z1, z2, . . . with the irritating possibility that the last ∆ of the zi
in this prefix may be altered by the fact that there are not sufficient symbols in the string w to
satisfy the criteria for zi = 0. Thus we observe (10):

x1 . . . x`−∆ = ρ∆(w1 . . . , wR)d∆ is a prefix of z1z2 . . . .

where ·d∆ denotes the truncation operator that removes the last ∆ symbols, and the sequence
z1z2 . . . is determined by the infinite string w1w2 . . .. Recall that the zi are binomially distributed
with parameter ≈ 1− α(1− f)∆. ut

Divergence for the Dominant Distribution. Our goal is to apply the reduction ρ∆, Lemma 1,
and Theorem 3 to establish an upper bound on the probability that a string drawn from the
dominant distribution Dfα has large ∆-divergence. The difficulty is that the distribution resulting
from applying ρ∆ to a string drawn from Dfα is no longer a simple binomial distribution, so we
cannot apply Theorem 3 directly. We resolve this obstacle in the proof of the following theorem.

Theorem 4. Let f ∈ (0, 1], ∆ ≥ 1, and α be such that α(1−f)∆ = (1+ε)/2 for some ε > 0. Let w be
a string drawn from {0, 1,⊥}R according to Dfα. Then we have Pr[div∆(w) ≥ k+∆] = 2−Ω(k)+logR.

Proof. Observe that div0(·) is monotone in the sense that if y̌ is a prefix of y then div0(y̌) ≤ div0(y);
this follows because any fork F̌ `0 y̌ can be “extended” to a fork F ` y which includes all tines
of F̌ . Additionally, we note that div0(·) has a straightforward “Lipshitz property”: if |y| ≤ |y̌|+ s
then div0(y) ≤ div0(y̌) + s; this follows because any fork F `0 y can be restricted to a fork F̌ `0 y̌
by retaining only vertices labeled by y̌—this can trim no more than s vertices from any tine.

In light of Lemma 1 we conclude that

div∆(w) ≤ div0(ρ∆(w)) ≤ div0(ρ∆(w)d∆) +∆ ≤ div0(z1 . . . zR) +∆ ,

where the last inequality follows because the random variable ρ∆(w1 . . . wR) can certainly have
length no more than R. As the random variables zi are binomial with Pr[zi = 0] ≥ α(1− f)∆, the
conclusion of Theorem 4 now follows directly from the assumption that α(1− f)∆ ≥ (1 + ε)/2 and
Theorem 3. ut

Remark. Intuitively, the theorem asserts that sampling the characteristic string in the ∆-semi-
synchronous setting with protocol parameter f according to Dfα is, for the purpose of analyzing
divergence, comparable to the synchronous setting in which the honest stake has been reduced
from α to α(1− f)∆.

4.4 Common Prefix, Chain Growth, and Chain Quality

Our results on ∆-divergence from the previous section allow us to easily establish the following
three statements.

Theorem 5 (Common prefix). Let k,R,∆ ∈ N and ε ∈ (0, 1). Let A be an α-dominated
adversary against the protocol πSPoS for some α satisfying α(1−f)∆ ≥ (1+ε)/2. Then the probability
that A, when executed in a ∆-semisynchronous environment, makes πSPoS violate the common prefix
property with parameter k throughout a period of R slots is no more than exp(lnR+∆−Ω(k)).
The constant hidden by the Ω(·)-notation depends on ε.

Proof. Observe that an execution of protocol πSPoS violates the common prefix property with
parameter k precisely when the ∆-fork F induced by this execution has div∆(F ) ≥ k. We have

Pr[div∆(F ) ≥ k] ≤ Pr
DfZ,A

[div∆(w) ≥ k] ≤ Pr
Dfα

[div∆(w) ≥ k] ≤ exp(lnR−Ω(k −∆))
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where the first inequality follows from the definition of div∆(·); the second one holds since DfZ,A � Dfα
and the set

D∆ = {x | div∆(x) ≥ k}

is monotone; and the last one follows from Theorem 4. (For convenience, we have moved the ∆
outside the asymptotic notation, which only makes the bound weaker as the hidden constant is less
than 1.) ut

To obtain a bound on the probability of a violation of the chain growth property, we again
consider the ∆-right-isolated uniquely honest slots introduced in Section 4.2. Intuitively, we argue
that the leader of such a slot has already received all blocks that were created in all previous such
slots and therefore the block it creates will be having depth larger than all these blocks. It then
follows that the length of the chain grows by at least the number of such slots.

Theorem 6 (Chain growth). Let k,R,∆ ∈ N and ε ∈ (0, 1). Let A be an α-dominated adversary
against the protocol πSPoS for some α > 0. Then the probability that A, when executed in a ∆-semi-
synchronous environment, makes πSPoS violate the chain growth property with parameters s ≥ 4∆
and τ = cα/4 throughout a period of R slots, is no more than exp (−cαs/(20∆) + lnR∆+O(1)),
where c denotes the constant c := c(f,∆) = f(1− f)∆.

Proof. Recall that the definition of chain growth requires that if the longest chain possessed by an
honest party at the onset of some slot sl1 is C1, and the longest chain possessed by a (potentially
different) honest party at the onset of slot sl2 ≥ sl1 + s is C2, then length(C2)− length(C1) ≥ τs.

Let ŝl1, . . . , ŝlh be the increasing sequence of all ∆-right-isolated uniquely honest slots among
the slots in T := {sl1 +∆, sl1 +∆+ 1, . . . , sl2−∆}. Observe that since ŝl1 ≥ sl1 +∆, the leader of

ŝl1 will append a block to a chain that is at least as long as C1, since C1 will be known to him and
will be considered in the maxvalid function. Therefore, the chain that the leader of ŝl1 diffuses will
be at least 1 block longer than C1. Analogously, the leader of every ŝli will diffuse a chain that is at
least 1 block longer than the chain diffused by the leader of ŝli−1 since ŝli−1 is ∆-right-isolated.
Finally, the chain diffused by the leader of ŝlh will be known to all parties at slot sl2 and hence
length(C2) will be at least as long as this chain. It follows that length(C2)− length(C1) ≥ h.

It remains to bound the number h of ∆-right-isolated uniquely honest slots among the slots with
indices in T . To make our notation more flexible, let HT (x) denote the number of ∆-right-isolated
uniquely honest slots among the slots from T in x ∈ {0, 1,⊥}R, we hence have h = HT (x) for

x← DfZ,A. Furthermore, let E ,
{
x ∈ {0, 1,⊥}R | HT (x) < cαs/4

}
where c = c(f,∆) = f(1−f)∆.

Observe that E is monotone, and hence DfZ,A � Dfα implies

Pr[h < cαs/4] = Pr
x←DfZ,A

[HT (x) < cαs/4] ≤ Pr
x←Dfα

[HT (x) < cαs/4]

and it is sufficient to bound upper-bound the last probability.

Consider now a characteristic string x sampled according to Dfα and for each t ∈ T , let Xt be

the indicator random variable for the event that ŝlt is ∆-right-isolated uniquely honest. Observe
that µ , E[Xt] = p0p

∆−1
⊥ ≥ αf(1− f)∆ according to Definition 11 and (6), and that the random

variables Xt and Xt′ are independent if |t − t′| ≥ ∆ (as they depend on the leader sets of non-
overlapping sets of slots). If we let Tz = {t ∈ T | t ≡ z mod ∆}, then the family of variables Xt

indexed by Tz are independent. Note also that |Tz| > b(s− 2∆)/∆c ≥ (s− 3∆)/∆ and that we may
write T as the disjoint union T0 ∪ · · · ∪ T∆−1. By the Chernoff bound of Appendix E with δ = 1/2,
for each Tz

Pr

[∑
t∈Tz

Xt < µ|Tz|/2

]
≤ e−µ|Tz|/20 ≤ e−

µ(s−3∆)
20∆ .

Observe that if
∑
t∈Tz Xt ≥ µ|Tz|/2 for each z then also HT (x) =

∑
t∈T Xt ≥ µ|T |/2 ≥ µŝ/2,

where we let ŝ , s− 2∆. It follows from the union bound that

Pr
x←Dfα

[HT (x) < µŝ/2] ≤ ∆ · e−
µ(s−3∆)

20∆ .
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As µ ≥ αf(1− f)∆, we obtain

Pr
x←Dfα

[HT (x) < cαŝ/2] ≤ Pr
x←Dfα

[HT (x) < µŝ/2] ≤ ∆ · e−
c·α(s−3∆)

20∆ .

Since s ≥ 4∆, we have ŝ ≥ s/2 and we can conclude that

Pr
x←Dfα

[HT (x) < cαs/4] = ∆ · e−
c·α(s−3∆)

20∆ .

Applying the union bound over the R slots, we conclude that the probability that there is a
chain growth violation with parameters s and τ = cα/4 is no more than

R∆ exp(−cα(s− 3∆)/(20∆)) = exp(−cα(s− 3∆)/(20∆) + lnR∆) .

ut

Our chain quality statement of Theorem 7 is a direct consequence of Lemma 4, which observes
that a sufficiently long sequence of consecutive blocks in an honest party’s chain will most likely
contain a block created in a ∆-right-isolated uniquely honest slot.

Lemma 4. Let k,∆ ∈ N and ε ∈ (0, 1). Let A be an α-dominated adversary against the pro-
tocol πSPoS for some α > 0 satisfying α(1 − f)∆ = (1 + ε)/2. Let B1, . . . , Bk be a sequence of
consecutive blocks in a chain C possessed by an honest party. Then at least one block Bi was created
in a ∆-right-isolated uniquely honest slot, except with probability exp(−Ω(k)).

Proof (sketch). For convenience, let us call a slot good if it is ∆-right-isolated uniquely honest, and
bad if it is neither empty nor good. Moreover, we call a block good (resp. bad) if it comes from a
good (resp. bad) slot.

Towards contradiction, assume that all blocks B1, . . . , Bk are bad. Let G1 denote the latest
good block preceding B1 in C, and G2 the earliest good block appearing after Bk in C (or the last
block of C, if there is no good one). Note that all blocks between G1 and G2 are bad.

Let ŝl1 (resp. ŝl2) denote the good slot in which G1 (resp. G2) was created (if G2 is not good,

let ŝl2 be the current slot). Denote by T the continuous sequence of slots between ŝl1 and ŝl2,

excluding ŝl1 and including ŝl2. As we argued in the proof of Theorem 6, in each good slot in T
the (unique) leader creates a block that has depth increased by at least 1 compared to the block
from the previous good slot. Therefore, we have d(G2) ≥ d(G1) + g, where g is the number of good
slots in T . However, in chain C we have d(G2) ≤ d(G1) + b, where b is the number of bad slots in
the same sequence T . These two conditions can only be satisfied at the same time if g ≤ b, we will
now show that this is very unlikely.

Consider E =
{
x ∈ {0, 1,⊥}R | g(x) ≤ b(x)

}
, where g(x) and b(x), as intuition suggests, denote

the numbers of good and bad slots on the positions indexed by T in the string x, respectively. We
again observe that E is monotone and therefore DfZ,A � Dfα implies

Pr
x←DfZ,A

[g(x) ≤ b(x)] ≤ Pr
x←Dfα

[g(x) ≤ b(x)]

and it is sufficient to bound upper-bound the last probability. However, we know that α(1− f)∆ =
(1+ ε)/2 and as we observed in (11), this implies that good slots are sampled with higher probability
than bad slots. Therefore, the probability that g(x) ≤ b(x) for x← Dfα falls exponentially with k. ut

Lemma 4 directly implies the following theorem.

Theorem 7 (Chain quality). Let k,R,∆ ∈ N and ε ∈ (0, 1). Let A be an α-dominated adversary
against the protocol πSPoS for some α > 0 satisfying α(1−f)∆ ≥ (1+ε)/2. Then the probability that A,
when executed in a ∆-semisynchronous environment, makes πSPoS violate the chain quality property
with parameters k and µ = 1/k throughout a period of R slots, is no more than exp(lnR−Ω(k)).
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4.5 Adaptive Adversaries

The statements in the previous sections give us guarantees on the common prefix, chain growth,
and chain quality properties as long as the adversary is α-dominated for some suitable value of α.
In Section 4.3 we argued that any static adversary that corrupts at most (1−α)-fraction of stake is
α-dominated. In this section we extend this claim also to adaptive adversaries, showing that as long
as they corrupt no more than (1− α)-fraction of stake adaptively throughout the whole execution,
they are still α-dominated.

Theorem 8. Every adaptive adversary A that corrupts at most (1−α)-fraction of stake throughout
the whole execution is α-dominated.

Proof (sketch). Let us start by taking a different (but equivalent) view on the choice of slot leaders
in the execution of πSPoS. Assuming that we have a fixed number C of coins (corresponding to
equally-sized units of stake), consider a family of independent, identically distributed Boolean
random variables {ct,i | 1 ≤ t ≤ R, 1 ≤ i ≤ C} such that for every ct,i we have

ct,i =

{
1 with probability φf (1/C) = 1− (1− f)1/C ,

0 otherwise.

We can view each of the random variables ct,i as being associated with a particular coin owned by
one of the parties. These random variables provide an alternative view of the slot leader election
process: the owner of coin i becomes a slot leader for slot t if ct,i = 1. Thanks to the “independent
aggregation property” (2), sampling the random variables ct,i yields a distribution on slot leaders
equivalent to the method used by πSPoS, i.e., switching to this method of assigning slot leaders does
not affect DfZ,A for any adversary A.

We now make the adversary stronger by allowing it to corrupt not only stakeholders, but indi-
vidual coins. (Formally, we can see each stakeholder with stake si as si separate stakeholders where
each controls a single coin; corrupting a coin then means corrupting such single-coin stakeholder. In
particular, this means that after corrupting coin i in some slot t, the adversary also learns the values
of the random variables ct′,i for all t′ ≥ t.) To see that this only extends the class of considered
adversaries, observe that any adversary A corrupting stakeholders can be trivially modified into a
coin-corrupting adversary A1 that simply corrupts all the coins belonging to the stake of a player
corrupted by A, maintaining DfZ,A = DfZ,A1

.
It is now important to observe that at any point during the execution, all the uncorrupted

coins are identical from the perspective of the adversary due to symmetry. Therefore, for any
coin-corrupting adversary A1 one can construct another coin-corrupting adversary A2 that achieves
the same outcomes, but corrupts the coins according to some fixed ordering: whenever A1 corrupts
a new coin, A2 instead corrupts the next coin in this ordering. The only difference this makes
from the perspective of the adversary is that with any corruption of a coin in slot t, the index i of
random variables ct′,i for t′ ≥ t, that are disclosed to it, changes. However, all these variables are

independent and identically distributed, hence we again have DfZ,A1
= DfZ,A2

.
Finally, consider a static adversary A3 that corrupts the first b(1 − α)Cc coins with respect

to the ordering used by A2. Then, during the execution, it acts exactly like A2 would, except for
corruptions; this is possible, since any coins corrupted by A2 must be already corrupted by A3 from
the beginning. Note that if we consider the natural coupling of the two executions with A2 and A3,
where the same randomness is used, then the sets of coins chosen for slot leaders will be the same
in both executions; and moreover, in each slot the set of coins corrupted by A3 is a superset of
those corrupted by A2. This implies that Pr[w(2) � w(3)] = 1, where w(i) is the random variable
corresponding to the characteristic string resulting from the execution with Ai. Using Theorem 11
from Appendix E, this in turn implies DfZ,A2

� DfZ,A3
. The proof is now concluded by observing

that DfZ,A3
� Dfα follows from Section 4.3, since A3 is static and corrupts at most (1− α)-share of

the stake. ut

Theorems 5, 6, 7 and 8 together give us the following corollary.

Corollary 1. Let A be an adaptive adversary against the protocol ΠSPoS that corrupts at most
(1− α)-fraction of stake. Then the bounds on common prefix, chain growth and chain quality given
in Theorems 5, 6, 7 are satisfied for A.
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4.6 The Resettable Protocol

With the analysis of these basic structural events behind us, we remark that the same arguments
apply to a modest generalization of the protocol which permits the adversary some control over
the nonce. Specifically, we introduce a “resettable” initialization functionality FrINIT, which permits
the adversary to select the random nonce from a family of r independent and uniformly random
nonces. Specifically, FrINIT is identical to FINIT, with the following exception:

– Upon receiving the first request of the form (genblock req, Ui) from some stakeholder Ui, FrINIT
samples a nonce η

$← {0, 1}λ, defines a “nonce candidate” set H = {η}, and permits the
adversary to carry out up to r − 1 reset events : each reset event draws an independent element
from {0, 1}λ, adds the element to the set H, and permits the adversary to replace the current
nonce η with any element of H. Finally, (genblock,S0, η) is sent to Ui. Later requests from any
stakeholder are answered using the same value η.

Looking ahead, our reason to introduce the resettable functionality FrINIT is to capture the
limited grinding capabilities of the adversary. A simple application of the union bound shows that
this selection of η from among a set of size r uniformly random candidate nonces can inflate the
probability of events during the run of πSPoS by a factor no more than r. We record this as a
corollary below.

Corollary 2 (Corollary to Theorems 5, 6, 7). The protocol ΠSPoS, with initialization func-
tionality FrINIT, satisfies the bounds of Theorems 5, 6, 7 with all probabilities scaled by r.

5 The Full Protocol

In this section, we construct a protocol that handles the dynamic case, where the stake distribution
changes as the protocol is executed. As in Ouroboros [KRDO17], we divide protocol execution in a
number of independent epochs during which the stake distribution used for sampling slot leaders
remains unchanged. The strategy we use to bootstrap the static protocol is, at a high level, similar:
we first show how the protocol can accommodate dynamic stake utilizing an ideal “leaky beacon”
functionality and then we show this beacon functionality can be simulated via an algorithm that
collects randomness from the blockchain.

In order to facilitate the implementation of our beacon, we need to allow the leaky beacon
functionality to be adversarially manipulated by allowing a number of “resets” to be performed
by the adversary. Specifically, the functionality is parameterized by values τ and r. First, it leaks
to the adversary, up to τ slots prior to the end of an epoch, the beacon value for the next epoch.
(Looking ahead, we remark that it is essential that the stake distribution used for sampling slot
leaders in the next epoch is determined prior to this leakage.) Second, the adversary can reset the
value returned by the functionality as many as r times. As expected for a beacon, it reports to
honest parties the beacon value only once the next epoch starts. After the epoch is started no
more resets are allowed for the beacon value. This mimics the functionality FINIT and its resettable
version FrINIT. Note that the ability of the adversary to reset the beacon can be quite influential
in the protocol execution: for instance, any event that depends deterministically on the nonce of
an epoch and happens with probability 1/2 can be easily forced to happen almost always by the
adversary using a small number of resets.

Naturally, we do not want to assume the availability of a randomness beacon in the final protocol,
even if it is leaky and resettable. In our final iteration of the protocol we show how it is possible to
simulate such beacon using a hash function that is modeled as a random oracle. This hash function
is applied to the concatenation of VRF values that are inserted into each block, using values from
all blocks up to and including the middle ≈ 8k slots of an epoch that lasts approximately 24k slots
in entirety. (The “quiet” periods before and after this central block of slots that sets the nonce will
ensure that the stake distribution, determined at the beginning of the epoch, is stable, and likewise
that the nonce is stable before the next epoch begins.) The verifiability of those values is a key
property that we exploit in the proof.

Our proof strategy is to reduce any adversary against the basic properties of the blockchain to
a resettable-beacon adversary that will simulate the random oracle. The key point of this reduction

23



is that whenever the random oracle adversary makes a query with a sequence of values that is a
candidate sequence for determining the nonce for the next epoch, the resettable attacker detects
this as a possible reset opportunity and resets the beacon; it obtains the response from the beacon
and sets this as the answer to the random oracle query.

The final issue is to bound the number of resets: towards this, note that the adversary potentially
controls a constant fraction of the ≈ 8k slots associated with nonce selection, and this allows him
to explore an a priori large space of independent random potential nonces (and, ultimately, select
one as the next epoch nonce). The size of this space is however upper-bounded by the number of
random oracle queries that the adversary can afford during the sequence of ≈ 8k slots. To formalize
this bound we utilize the q-bounded model of [GKL15] that bounds the number of queries the
adversary can pose per round: in that model, the adversary is allowed q queries per adversarial
party per round (“slot” in our setting).5 Assuming that the adversary controls t parties, we obtain
a bound equal to ≈ 8qtk.

5.1 The Dynamic Stake Case with a Resettable Leaky Beacon

First we construct a protocol for the dynamic stake case assuming access to a resettable leaky
beacon that provides a fresh nonce for each epoch. This beacon is leaky in the sense that it allows
the adversary to obtain the nonce for the next epoch before the epoch starts, and resettable in the
sense that it allows the adversary to reset the nonce a number of times. We model the resettable
leaky randomness beacon in functionality Fτ,rRLB presented in Figure 8.

Functionality Fτ,rRLB

Fτ,rRLB incorporates the diffuse functionality from Section 2.2 and is parameterized by the number of
initial stakeholders n and their respective stakes s1, . . . , sn, a nonce leakage parameter τ and a number
of allowed resets r. Fτ,rRLB interacts with stakeholders U1, . . . , Un and an adversary A as follows:

– In the first round, Fτ,rRLB operates exactly as FINIT.
– Upon receiving (genblock req, sid, Ui) from stakeholder Ui it operates as functionality FINIT on

that message.
– Upon receiving (epochrnd req, sid, Ui, ej) from stakeholder Ui, if ej ≥ 2 is the current epoch,
Fτ,rRLB sends (epochrnd, sid, ηj) to Ui.

– For every epoch ej , at slot jR − τ , Fτ,rRLB samples the next epoch’s nonce ηj+1
$← {0, 1}λ and

leaks it by sending (epochrnd leak, sid, ej , ηj+1) to the adversary A. Additionally, Fτ,rRLB sets an
internal reset request counter Resets = 0 and sets P = ∅.

– Upon receiving (epochrnd reset, sid,A) from A at epoch ej , if Resets < r and if the current slot

is past slot jR− τ , Fτ,rRLB samples a fresh nonce for the next epoch ηj+1
$← {0, 1}λ and leaks it

by sending (epochrnd leak, sid, ηj+1) to A. Finally, Fτ,rRLB increments Resets and adds ηj+1 to P.
– Upon receiving (epochrnd set, sid,A, η) from A at epoch ej , if the current slot is past slot jR− τ

and if η ∈ P, Fτ,rRLB sets ηj+1 = η and sends (epochrnd leak, sid, ηj+1) to A.

Fig. 8: Functionality Fτ,rRLB .

We now describe protocol πDPoS, which is a modified version of πSPoS that updates its genesis
block B0 (and thus the assignment of slot leader sets) for every new epoch. The protocol also
adopts an adaptation of the static maxvalidS function, defined so that it narrows selection to those
chains which share common prefix. Specifically, it adopts the following rule, parametrized by a
prefix length k:

Function maxvalid(C,C). Returns the longest chain from C ∪ {C} that does not fork from C
more than k blocks. If multiple exist it returns C, if this is one of them, or it returns the
one that is listed first in C.

The protocol πDPoS is described in Figure 9 and functions in the Fτ,rRLB-hybrid model.

5 Note that we utilize the q-bounded model only to provide a more refined analysis; given that the total
length of the execution is polynomial in λ one may also use the total execution length as a bound.
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Protocol πDPoS

The protocol πDPoS is run by stakeholders, initially equal to U1, . . . , Un interacting among themselves
and with ideal functionalities Fτ,rRLB (or FINIT), FVRF,FKES,FDSIG,H over a sequence of L = ER slots
S = {sl1, . . . , slL} consisting of E epochs with R slots each. Define T ji , 2`VRFφf (αji ) as the threshold for
a stakeholder Ui for epoch ej , where αji is the relative stake of stakeholder Ui at epoch ej , `VRF denotes
the output length of FVRF, f is the active slots coefficient and φf is the mapping from Definition 1.
Then πDPoS proceeds as follows:

1. Initialization. This step is the same as Step 1 in πSPoS except that any messages for FINIT are
sent to Fτ,rRLB if it is available instead.

2. Chain Extension. After initialization, for every slot sl ∈ S, every online stakeholder Ui performs
the following steps:
(a) This step is the same as Step 2a in πSPoS.
(b) If a new epoch ej , with j ≥ 2, has started, Ui defines Sj to be the stakeholder distribution

drawn from the most recent block with time stamp up to (j − 2)R as reflected in C (where τ
parameterizes Fτ,rRLB) and sends (epochrnd req, sid, Ui, ej) to Fτ,rRLB , receiving (epochrnd, sid, ηj)
as answer.

(c) Ui collects all valid chains received via diffusion into a set C, pruning blocks be-
longing to future slots and verifying that for every chain C′ ∈ C and every block
B′ = (st′, d′, sl′, Bπ

′, ρ′, σj′) ∈ C′ it holds that the stakeholder who created it is in
the slot leader set of slot sl′ (by parsing Bπ

′ as (Us, y
′, π′) for some s, verifying that

FVRF responds to (Verify, sid, ηj ‖ sl′ ‖ TEST, y′, π′, vvrfs ) by (Verified, sid, ηj ‖ sl′ ‖ TEST, y′, π′, 1),
and that y′ < T js where T js is the threshold of stakeholder Us for the epoch ej to
which sl′ belongs), that FVRF responds to (Verify, sid, ηj ‖ sl′ ‖ NONCE, ρ′y, ρ′π, vvrfs ) (where
ρ′ = (ρ′y, ρ

′
π)) by (Verified, sid, ηj ‖ sl′ ‖ NONCE, ρ′y, ρ′π, 1), and that FKES responds to

(Verify, sid, (st′, d′, sl′, Bπ
′, ρ′), sl′, σj′ , v

kes
s ) by (Verified, sid, (st′, d′, sl′, Bπ

′, ρ′), sl′, 1). Ui com-
putes C′ = maxvalid(C,C), sets C′ as the new local chain and sets state st = H(head(C′)).

(d) Ui sends (EvalProve, sid, ηj ‖ sl ‖ NONCE) to FVRF, obtaining (Evaluated, sid, ρy, ρπ), Afterwards,
Ui sends (EvalProve, sid, ηj ‖ sl ‖ TEST) to FVRF, receiving (Evaluated, sid, y, π). Ui checks
whether it is in the slot leader set of slot sl with respect to the current epoch ej by check-
ing that y < T ji . If yes, it generates a new block B = (st, d, sl, Bπ, ρ, σ) where st is its
current state, d ∈ {0, 1}∗ is the transaction data, Bπ = (Ui, y, π), ρ = (ρy, ρπ) and σ is
a signature obtained by sending (USign, sid, Ui, (st, d, sl, Bπ, ρ), sl) to FKES and receiving
(Signature, sid, (st, d, sl, Bπ, ρ), sl, σ). Ui computes C′ = C|B, sets C′ as the new local chain and
sets state st = H(head(C′)). Finally, if Ui has generated a block in this step, it diffuses C′.

3. Signing Transactions. This step is the same as Step 3 in πSPoS.

Fig. 9: Protocol πDPoS

Lazy players. Note that while the protocol πDPoS in Figure 9 is stated for a stakeholder that is
permanently online, this requirement can be easily relaxed. Namely, it is sufficient for an honest
stakeholder to join at the beginning of each epoch, determine whether she belongs to the slot leader
set for any slots within this epoch (using the Eval interface of FVRF), and then come online and
act on those slots while maintaining online presence at least every k slots. For now we only sketch
this variant in Appendix H and defer a formal treatment of this property of our protocol to a later
version.

We proceed to the security analysis of this protocol in the hybrid world where the functionality
Fτ,rRLB is available to the protocol participants. A key challenge is that in the dynamic stake setting,
the honest majority assumption that we have in place for the stakeholders refers to the stakeholder
view of the honest stakeholders in each slot. Already in the first few slots this assumption may
diverge rapidly from the stakeholder distribution that is built-in the genesis block.

To accommodate the issues that will arise from the movement of stake throughout protocol
execution, we recall the notion of stake shift defined in [KRDO17].

Definition 13. Consider two slots sl1, sl2 and an execution E. The stake shift between sl1, sl2 is
the maximum possible statistical distance of the two weighted-by-stake distributions that are defined
using the stake reflected in the chain C1 of some honest stakeholder active at sl1 and the chain C2
of some honest stakeholder active at sl2.
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Finally, the security of πDPoS is stated below. We slightly abuse the notation from previous
sections and denote by αH a lower bound on the honest stake ratio throughout the whole execution.

Theorem 9 (Security of πDPoS with access to Fτ,rRLB). Fix parameters k,R,∆,L ∈ N, ε, σ ∈
(0, 1) and r. Let R ≥ 16k/(1 + ε) be the epoch length, L the total lifetime of the system, and

αH(1− f)∆ ≥ (1 + ε)/2 + σ . (12)

The protocol πDPoS, with access to Fτ,rRLB, with τ ≤ 8k/(1 + ε) satisfies persistence with parameters
k and liveness with parameters u = 8k/(1 + ε) throughout a period of L slots of ∆-semisynchronous
execution with probability 1− exp(lnL+∆+ log(r)−Ω(k)) assuming that σ is the maximum stake
shift over R slots.

Proof (sketch). We first observe that due to the conditions imposed on the leakiness of the Fτ,rRLB
oracle, its level of resettability, and the domination of honest stake even after the stake shift is taken
into account, Corollary 2 still applies for the whole execution over L slots. The critical observation
is the fact that the stakeholder distribution is determined in each epoch j ≥ 2 by the block that
has time stamp up to (j − 2)R. Since R ≥ 16k/(1 + ε) and τ ≤ 8k/(1 + ε) it holds that at least
R− τ ≥ 8k/(1 + ε) slots will pass before the leaky beacon releases the random value of the next
epoch. By applying the chain growth theorem with s = 8k/(1 + ε) we obtain that, except with
error exp

(
−f(1− f)∆αs/(20∆) + lnL∆+O(1)

)
= exp (−Ω(k) + lnL+ ln∆) the chain will grow

by f(1− f)∆αH/4 · u ≥ (1 + ε)/8 · u = k blocks in that period of slots and thus the stakeholder
distribution is completely determined prior to the leaky beacon releasing the random value of the
next epoch. Based on the above, we observe that any violation of persistence in the execution with
parameter k results in the violation of common prefix with parameter k. Applying a union bound,
we obtain an error of exp(lnL+∆+ log(r)−Ω(k)).

We then examine liveness. Consider any transaction that is provided to the honest parties for a
sequence of u = 8k/(1 + ε) slots it will follow, as before that by chain growth the chain will grow
by k blocks. Then, by the chain quality property this means that at least one honest block will be
added and hence this block will contain the transaction posted. ut

Note that while Theorem 9 (and also Corollary 3 below) formulates the bound (12) in terms of
the overall upper bound on honest stake ratio αH and maximum stake shift σ over any R-slots
interval, one could easily prove more fine-grained statements that would only require inequality (12)
to hold for each epoch, with respect to the honest stake ratio and stake shift in this epoch.

5.2 Instantiating Fτ,r
RLB

In this section, we show how to substitute the oracle Fτ,rRLB of protocol πDPoS with a subprotocol
πRLB that simulates Fτ,rRLB. The resulting protocol can then operate directly in the FINIT-hybrid
model as in Section 3 (without resets) while utilizing a random oracle H(·). The sub-protocol πRLB
is described in Figure 10.

Protocol πRLB

Let H(·) be a random oracle. πRLB is a sub-protocol of πDPoS proceeding as follows:
– Upon receiving (epochrnd req, sid, Ui, ej) from stakeholder Ui, if ej ≥ 2 is the current epoch, it

performs the following: for every block B′ = (st′, d′, sl′, Bπ
′, ρ′, σj′) ∈ C (where C is the callee’s Ui’s

internal chain) belonging to epoch ej−1 up to the slot with timestamp up to (j− 2)R+ 16k/(1 + ε),
concatenate the values ρ′ into a value v. Compute ηj = H(ηj−1||j||v) and return (epochrnd, sid, ηj).

Fig. 10: Protocol πRLB .

We will show next that the sub-protocol πRLB can safely substitute Fτ,rRLB when called from
protocol πDPoS. We will perform our analysis in the q-bounded model of [GKL15] assuming that
the adversary is capable of issuing q queries per each round of protocol execution per corrupted
party and there are t corrupted parties.
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Lemma 5. Consider the event of violating one of common prefix, chain quality, chain growth in
an execution of πDPoS using sub-protocol πRLB in the FINIT-hybrid model with adversary A and
environment Z with the same parameter choices as Theorem 9. We construct an adversary A′ so
that the corresponding event happens with the same probability in an execution of πDPoS in the
Fτ,rRLB-hybrid world with adversary A′ and environment Z assuming that r = 8tqk/(1 + ε).

Proof (sketch). The adversary A′ simulates A by maintaining locally the table for the random
oracle H(·). The key point in the simulation of A is to detect when is appropriate for A′ to issue
a reset query to its Fτ,rRLB oracle. Specifically, a reset query will be triggered whenever A queries
H(·) with concatenated valid VRF values ηj−1 ‖ j ‖ ρi ‖ · · · ‖ ρi′ that are drawn from a valid chain
and, specifically, from the first block of epoch ej to a block of that epoch with time stamp between
8k/(1 + ε) and 16k/(1 + ε). We observe that by chain growth and chain quality at least one honest
block in the middle 8k/(1 + ε) slots of an epoch will be included in the chain of all honest parties
and contribute to the calculation of the hash. Finally, when the epoch ej reaches an end, A′ will
issue (epochrnd set, w) query to Fτ,rRLB to set the value of the beacon to the correct value w of the
H(·) table as it has been determined by the chain that is on the common prefix that consists of all
the blocks of the epoch that contains blocks produced in the first 16k/(1 + ε) slots of the epoch.
Note that the event that the ηj−1 ‖ j ‖ ρi ‖ · · · ‖ ρi′ sequence corresponding to that chain in the
common prefix was never queried to H(·) happens with negligible probability. ut

Based on the above lemma, it is now easy to revisit Theorem 9, and show that the same result
holds for r in the q-bounded model assuming r = 8tkq/(1 + ε) and τ ≤ 8k/(1 + ε) which permits to
set our epoch length R to 24k/(1 + ε).

Corollary 3 (Security of πDPoS with subprotocol πRLB). Fix parameters k,R,∆,L ∈ N, ε, σ ∈
(0, 1). Let R = 24k/(1 + ε) be the epoch length, L the total lifetime of the system, and αH(1− f)∆ ≥
(1 + ε)/2 + σ. The protocol πDPoS using subprotocol πRLB in the FINIT-hybrid model satisfies
persistence with parameters k and liveness with parameters u = 8k/(1 + ε) throughout a period of L
slots of ∆-semisynchronous execution with probability 1− exp(lnL+∆−Ω(k − log tkq)) assuming
that σ is the maximum stake shift over R slots.
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A Definitions

In this appendix, we present formal definitions of Verifiable Random Functions and Key Evolving
Signature Schemes with Forward Security.

A.1 Verifiable Random Functions

We present formal definitions of Verifiable Random Functions from [DY05].

Definition 14 (Verifiable Random Function). A function family F·(·) : {0, 1}` → {0, 1}`VRF
is a family of VRFs if there exist algorithms (Gen,Prove,Ver) such that (i.) Gen(1k) outputs a
pair of keys (VRF.pk,VRF.sk), (ii.) ProveVRF.sk(x) outputs a pair (FVRF.sk(x), πVRF.sk(x)), where
FVRF.sk(x) ∈ {0, 1}`VRF is the function value and πVRF.sk(x) is the proof of correctness, and (iii.)
VerVRF.pk(x, y, πVRF.sk(x)) verifies that y = FVRF.sk(x) using proof πVRF.sk(x), outputting 1 if y is
valid and 0 otherwise. Additionally, we require the following properties:

1. Uniqueness: no values (VRF.pk, x, y, y′, πVRF.sk(x), πVRF.sk(x)′) can satisfy both

ProveVRF.pk(x, y, πVRF.sk(x)) = 1 and ProveVRF.pk(x, y′, πVRF.sk(x)′) = 1

unless y = y′.
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2. Provability: if y, πVRF.sk(x) = ProveVRF.sk(x), then VerVRF.pk(x, y, πVRF.sk(x)) = 1.
3. Pseudorandomness: for any PPT algorithm A = (AE , AJ), which runs for a total of s(k)

steps when its first input is 1k, and does not query the Prove(·) oracle on x,

Pr

b = b′

∣∣∣∣∣∣∣∣
(VRF.pk,VRF.sk)← Gen(1k);

(x,Ast)← A
Prove(·)
E (VRF.pk);

y0 = FVRF.sk(x); y1 ← {0, 1}`VRF ;
b← {0, 1}; b′ ← A

Prove(·)
J (yb, Ast)

 ≤ 1

2
+ negl(k) .

A.2 Digital Signatures and FDSIG

In Figure 11, we present Functionality FDSIG as defined in [Can04], where it is also shown that
EUF-CMA signature schemes realize FDSIG. This functionality will be used to model signatures on
transactions.

Functionality FDSIG

FDSIG interacts with a signer US and stakeholders U1, . . . , Un as follows:
– Key Generation. Upon receiving a message (KeyGen, sid, US) from a stakeholder US , hand

(KeyGen, sid, US) to the adversary. Upon receiving (VerificationKey, sid, US , v) from the adversary,
output (VerificationKey, sid, v) to Ui, and record the triple (sid, US , v).

– Signature Generation. Upon receiving a message (Sign, sid, US ,m) from US , verify that
(sid, US , v) is recorded for some sid . If not, then ignore the request. Else, send (Sign, sid, US ,m)
to the adversary. Upon receiving (Signature, sid, US ,m, σ) from the adversary, verify that no en-
try (m,σ, v, 0) is recorded. If it is, then output an error message to US and halt. Else, output
(Signature, sid,m, σ) to US , and record the entry (m,σ, v, 0).

– Signature Verification. Upon receiving a message (Verify, sid,m, σ, v′) from some stakeholder Ui,
hand (Verify, sid,m, σ, v′) to the adversary. Upon receiving (Verified, sid,m, φ) from the adversary
do:
1. If v′ = v and the entry (m,σ, v, 1) is recorded, then set f = 1. (This condition guarantees

completeness: If the verification key v′ is the registered one and σ is a legitimately generated
signature for m, then the verification succeeds.)

2. Else, if v′ = v, the signer is not corrupted, and no entry (m,σ′, v, 1) for any σ′ is recorded,
then set f = 0 and record the entry (m,σ, v, 0). (This condition guarantees unforgeability: If
v′ is the registered one, the signer is not corrupted, and never signed m, then the verification
fails.)

3. Else, if there is an entry (m,σ, v′, f ′) recorded, then let f = f ′. (This condition guarantees
consistency: All verification requests with identical parameters will result in the same answer.)

4. Else, let f = φ and record the entry (m,σ, v′, φ).
Output (Verified, sid,m, f) to Ui.

Fig. 11: Functionality FDSIG.

A.3 Forward Secure Signatures Schemes

We present the formal definitions of key evolving signature schemes and forward security of [BM99,IR01].

Definition 15 (Key Evolving Signature Schemes). A key evolving signature scheme KES =
(Gen,Sign,Verify,Update) is a tuple of algorithms such that:

1. Gen(1k, T ) is a probabilistic key generation algorithm that takes as input a security parameter
1k and the total number of periods T , outputting a key pair (KES.sk1,KES.vk), where KES.vk
is the verification key and KES.sk1 is the initial signing key (we assume that the period j to
which a signing key KES.skj corresponds is encoded in the signing key itself).
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2. SignKES.skj (m) is a probabilistic signing algorithm that takes as input a secret key KES.skkest
for the time period j ≤ T and a message m, outputting a signature σj on m for time period j
(we assume that the period j for which a signature σj was generated is encoded in the signature
itself).

3. VerifyKES.vk(m,σj) is a deterministic verification algorithm that takes as input a public key
KES.vk, a message m and a signature σj, outputting 1 if σj is a valid signature on message m
for time period j and 0 otherwise.

4. Update(KES.skj) is a probabilistic secret key update algorithm that takes as input a secret key
KES.skj for the current time period j and outputs a new secret key KES.skj+1 for time period
j + 1. We define KES.skT+1 as the empty string and set it as the output of Update(KES.skT ).

Correctness: for every key pair (KES.sk1,KES.vk)← Gen(1k, T ), every message m and every
time period j ≤ T ,
VerifyKES.vk(m,SignKES.skj (m)) = 1.

Given a key evolving signature scheme, forward security is defined by a game that starts as the
standard Chosen Message Attack (CMA) experiment but after a number of queries to the signing
oracle allows the adversary to learn the signing key for the current time period. The adversary is
successful if it can produce a valid signature on a message of its choice for an earlier time period.
The experiment and forward security are formally defined as follows.

Definition 16 (Forward Security Experiment). A forger is a pair of algorithms F = (Fcma, Fforge)
such that Fcma has access to a signing oracle. For a key pair (KES.vk,KES.sk1)← Gen(1k, T ), Fcma

is given KES.vk and T and queries the signing oracle qsig times with adaptively chosen message
and time period pairs, outputting the set of queried message and time period pairs CM , the set of
corresponding signatures sign(CM) and a time period b. Given CM , sign(CM) and the signing key
KES.skb for time period b, Fforge outputs (m,σj)← Fforge(CM, sign(CM),KES.skb). F is successful
if (m, j) /∈ CM , j < b and VerifyKES.vk(m,σj) = 1. (The two components of F can communicate
the necessary information, including T and b through CM .)

Definition 17 (Forward Security). Let Succfwsig(KES[k, T ], F ) be the probability (over the
random coins of KES and F ) that F is successful in the forward security experiment of Defini-
tion 16. Let the function InSecfwsig(KES[k, T ], t, qsig) (the insecurity function) be the maximum
of Succfwsig(KES[k, T ], F ), over all algorithms F that are restricted to running time t and qsig
signature queries. A key evolving signature scheme KES is forward secure against an adversary that
runs in time t and makes qsig signature queries if Succfwsig(KES[k, T ], F ) is negligible in k.

B Realizing FKES

We will follow the proof strategy of [Can04] to show that a construction based on a key evolving
signature scheme (Definition 15) realizes FKES. Our construction πKES is based on a key evolving
signature scheme KES = (Gen,Sign,Verify,Update). The signature protocol πKES is run between a
stakeholder US and stakeholders U1, . . . , Un, proceeding as follows:

– Key Generation: When US receives an input (KeyGen, sid, US) , it runs Gen(1k, T ), records
the signing key (sid,KES.sk1,), sets counter kctr = 1 and outputs (VerificationKey, sid,KES.vk).

– Signature and Update: When US receives an input (Sign, sid, US ,m, j) for a sid for which
it has the signing key (sid,US,KES.skkctr ,) and that kctr ≥ j ≤ T . Otherwise, it ignores the
input. First, US performs the following steps until kctr = j: run Update(KES.skkctr) to obtain
KES.skkctr+1, securely erase KES.skkctr and increment kctr. Next, It runs SignKES.skkctr

(m) to

obtain σkctr , runs Update(KES.skkctr) to obtain KES.skkctr+1, securely erases KES.skkctr , outputs
(Signature, sid,m, kctr, σkctr) and increments kctr.

– Verification: When a stakeholder Ui receives an input (Verify, sid,m, j, σj ,KES.vk′), it outputs
(Verified, sid,m, j,VerifyKES.vk′(m,σj)).

Theorem 1 The πKES construction presented above, realizes FKES with erasures assuming KES =
(Gen,Sign,Verify,Update) is a key evolving signature scheme with forward security as per Defini-
tion 15 and Definition 17.
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Proof. We follow the approach of [Can04] by showing that an environment Z that distinguishes an
ideal execution with a prescribed simulator S and FKES from a real execution with an adversary A
and πKES can be used to construct a forger for the underlying key evolving signature scheme σ
that is successful in the forward security experiment of Definition 16 with non-negligible probability,
thus contradicting the forward security guarantee of σ. We argue that since Z can distinguish the
real world execution from the idea world execution for any Z, it will also succeed for an specific
simulator S. Simulator S runs an internal copy of A, proceeding as follows:

– S forwards any inputs from Z to A and any outputs from A to Z.
– Upon receiving (KeyGen, sid, US) from FKES, S runs Gen(1k, T ), records the signing key

(sid,US,KES.sk1,), sets counter kctr = 1 and sends (VerificationKey, sid, USKES.vk) to FKES.
– Upon receiving (Signature, sid, US , j,m) from FKES, S checks that kctr ≥ j ≤ T . Otherwise, it

ignores the request. First, S performs the following steps until kctr = j: run Update(KES.skkctr) to
obtain KES.skkctr+1, securely erase KES.skkctr and increment kctr. Next, S runs SignKES.skkctr

(m)

to obtain σkctr , runs Update(KES.skkctr) to obtain KES.skkctr+1, securely erases KES.skkctr , sends
(Signature, sid, US ,m, kctr, σkctr) to FKES and increments kctr.

– Upon receiving (Verify, sid,m, j, σ,KES.vk′) from FKES, S sends
(Verified, sid,m, j,VerifyKES.vk′(m,σj)) to FKES.

– When A corrupts a party U ′, S corrupts U ′ in the ideal world. If U ′ = US (i.e. the signer), S
reveals the signing key KES.skkctr and the internal state of Sign (if there’s any) as the state of
U′.

Given an environment Z that distinguishes an ideal execution with simulator S and FKES from
a real execution with A and πKES , we will construct a forger F = (Fcma, Fforge) for the underlying
key evolving signature scheme σ. Our forger F will run an internal copy of Z, simulating for Z
the interactions with S and FKES (i.e. acting as S and FKES towards Z). Moreover, F will run an
internal copy of A as in the case of S.

Forger F starts execution as Fcma in the first phase of the forward security game (as per
Definition 16), where it is given a verification key KES.vk for total number of time periods T and
has access to signing oracle. When F is activated, it gives A the verification key KES.vk obtained in
the forward security experiment. Whenever F has to generate a signature as S, it calls its signing
oracle with the given message and current kctr, which are added the set of queried message and time
period pairs CM . The signatures obtained from the oracle are used in the answers of the simulated
S and added the set of signatures sign(CM) corresponding to CM . Whenever the internal Z
activates an uncorrupted party with (Verify, sid,m, j, σ,KES.vk′), F tests whether (m, j) /∈ CM ,
VerifyKES.vk′(m,σj) and j < kctr. If this condition is met and the signer is not corrupted, the triple
(m, j, σ) can be used by F to succeed in the forward security experiment. F outputs CM , sign(CM)
and kctr ending the first phase of the forward security game. Next, acting as Fforge in the forward
security game, it outputs (m,σj), succeeding in the experiment. If A corrupts the signer, F outputs
⊥ and halts.

Following the same reasoning as in [Can04], we argue that given the correctness property of
σ, the internal environment Z would not issue a query (Verify, sid,m, j, σ,KES.vk′), F such that
(m, j) /∈ CM , VerifyKES.vk′(m,σj) and j < kctr in the case that the signer is not corrupted. If this
query indeed does not happen, Z would not be able to distinguish between an ideal and a real
executions. However, this query happens with non-negligible probability since we assume that Z
does distinguish real from ideal executions. Moreover, notice that the interactions with FKES from
the point of view of A and Z are the same in a real world execution with πKES , guaranteeing that
a forgery is obtained. ut

C Realizing FVRF

We provide an implementation of FVRF in the random oracle model using two hash functions
H,H ′ with ranges {0, 1}`VRF and 〈g〉 respectively with |〈g〉| = q. The implementation is based
on the 2-Hash-DH verifiable oblivious PRF construction of [JKK14]. Specifically, the public-key
is equal to v = gk and the output is y = H(m,u) where u = H ′(m)k, while the proof is set
to π = (u,EQDL(k : logH′(m)(u) = logg(v);m, v)). The verification of (m, y, π, v) proceeds as
follows. First it parses π as (u, π′) where π′ is a proof of equality of discrete logarithms. It verifies
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y = H(m,u) as well as the proof π′ and returns 1 if and only if both tests pass. The proof notation
EQDL(k : logH′(m)(u) = logg(v);m, v) stands for the string (c, s) where c = H(m, v, gr, H ′(m)r),
s = r + kc mod q, while the verification of (c, s) on context m, v is performed by checking the
equality

c = H(m, v, gsv−c, H ′(m)su−c) .

Theorem 2 The 2Hash-DH construction presented above, realizes FVRF in the random oracle model
assuming the CDH.

Proof. We describe a simulator S that controls the random oracles H,H ′ and operates in the
following manner.

1. Upon receiving a message (KeyGen, sid, Ui) from FVRF, a new value v = gk is selected for a
random k and S inserts (Ui, v) in its internal registry of keys; in case the key exists already, S
returns fail and terminates. It returns to FVRF the message (VerificationKey, sid, Ui, v).

2. Upon receiving a message (EvalProve, sid, Ui,m) from FVRF, this is matched to the verification
key v of Ui and is checked whether m has been queried before. In such case, the value u that
corresponds to m in the table for v is recovered. In case m was not queried before, it is checked
whether H ′(m) is defined. In such case the entry (base,m, t) is recovered, the value u is set to
vt and the triple (v,m, u) is stored for future reference. In case the value H ′(m) is undefined S
selects t at random, stores (base,m, t) and sets H ′(m) = gt. Subsequently random c, s values
are selected by S; the pair ((m, v, gsv−c, H ′(m)su−c), c) is inserted to the table of the random
oracle H. In case this is not feasible (because that would make the table inconsistent), S outputs
fail and terminates. Finally, π is set to (u, (c, s)) and the message (Eval, sid,m, π) is returned
to FVRF.

3. Upon receiving (Verify, sid,m, y, π, v′) from FVRF, parse π as (u′, (c, s)) and verify the proof
(c, s) as a proof of equality of discrete logarithms, logg(v

′) = logH′(m)(u
′), to obtain a bit b.

Now observe that (base,m, t) must be recorded, and set b′ = ((u′)1/t = v′) ∧ (H(m,u) = y). If
b 6= b′ output fail and terminate. In any other case, return (Verified, sid,m, y, π, v′) to FVRF.

4. Upon receiving a query m for the random oracle H ′, select t at random, store (base,m, t) and
return gt.

5. Upon receiving a query for the random oracle H of the form (m,u), and the value (base,m, t)
is stored previously, S performs the following. First, if v = u1/t is not registered as a public-key
it registers (KeyGen, sid, v) with FVRF. Then it submits (Eval, sid, u1/t,m) to the FVRF. If FVRF

ignores the request S terminates with fail. Else it obtains the response y which is set as the
random oracle output to the query (m,u). In case (base,m, t) is not stored, then perform the
step that corresponds to the query H ′(m) above and repeat the current step.
Other queries to H are handled by returning random elements of {0, 1}`VRF .

We observe that unless S outputs fail the simulation of protocol 2Hash-DH is perfect. We
next argue that the probability to output fail is negligible. S outputs fail in the case that FVRF

ignores a request (Eval, sid, u1/t,m). This means that the key v = u1/t is registered with an honest
party that has not evaluated m. It follows that the event an adversary that produces such u can be
turned to solver for the CDH assumption. The other cases where S produces fail, specifically, step
1 and step 3 can be easily seen to be negligible probability events. ut

D Insecurity of the Original Ouroboros Against Adversarial Message
Delays

This appendix informally describes several attacks against the Proof-of-Stake protocol Ouroboros
proposed in [KRDO17], when used in various environments that allow the adversary to control
message delays to some extent.

We consider two variants of the semi-synchronous model. With sender-side delays, each message
can be delayed on the side of its sender, and hence after being delayed, it arrives to all recipients in
the same round. On the other hand, if we allow for recipient-side delays, the each message can be
delayed for a different time period for each of its recipients. The latter model is the one that we
consider for our positive results in the main body of the paper. Clearly this latter model gives more
power to the adversary, hence we explore it first here.
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D.1 Recipient-Side Delays

The Model. The model for recipient-side delays is identical to the one given in Section 2.2.

Attack Description. Intuitively, the adversary aims to violate the common prefix property by
maintaining two tines that are growing at approximately the same rate: so that their lengths never
differ by more than one block. This is achieved by disclosing the blocks mined in the past ∆ rounds
(which are distributed via the DDiffuse functionality and hence can be delayed by A) in a controlled
way to affect the decision of the current slot leader (in case he is honest) about which of the two
tines to extend.

The attack can be performed even in the simple setting with a static stake and slot leaders
sampled by an idealized beacon. Moreover, it can be carried out without any corrupted parties at
all (i.e., also if the adversarial stake ratio αA = 0), as long as A maintains control over message
delays.

In detail, A behaves as follows:

1. Internally, A maintains two tines T0 and T1, initially empty. Whenever any party diffuses a
chain C such that some Ti is a prefix of C, A replaces Ti with C (except for the trivial initial
case when any chain is a prefix of both T0 and T1, here A only replaces T0).

2. In each slot slr:
(a) Determine Ts, the tine that is currently not longer, i.e., such that it satisfies |Ts| ≤ |T1−s|.
(b) Let Ui denote the slot leader for the upcoming slot slr+1. If a message containing Ts was

diffused in this round, A delivers it to the inbox of Ui and to the delayedj-strings for all
other parties j 6= i. Otherwise, if a message containing Ts is already present in delayedi, A
removes it from delayedi and delivers it to the inbox of party Ui.

(c) A moves all messages diffused in this round into the delayed-strings of all parties.

D.2 Sender-Side Delays

We now argue that the original Ouroboros protocol is insecure even against sender-side adversarial
message delays.

The Model. We consider an ideal functionality SDiffuse∆ that is defined exactly as the functionality
Diffuse given in [KRDO17], except for two differences:

1. When the adversary A is activated, besides performing any of the actions that were allowed by
the Diffuse functionality, it is also allowed to:
– move any message obtained in a diffuse request from a party to a special string delayed,
– move any message from the string delayed to the inboxes of all parties.

2. At the end of each round, the functionality ensures that for every message that was either
(a) diffused in this round and not put to the string delayed or (b) removed from the string
delayed in this round, it is present in the inboxes of all parties. If any message currently present
in delayed was originally diffused at least ∆ slots ago, then the functionality removes it from
delayed and appends it to the inbox of all parties.

We again define our model by replacing Diffuse by SDiffuse∆ in the model of [KRDO17] (this
gives us a class of models parametrized by ∆, setting ∆ = 0 again results in the original model
of [KRDO17]).

Attack Description. The adversary again aims to violate the common prefix property by maintaining
two tines that are growing at approximately the same rate. However, this time it cannot deliver
messages selectively to future slot leaders, and hence the attack requires a slight modification.

The details of the attack depend on the exact definition of the maxvalid function that honest
parties use to choose the winning chain, namely on how it does tie-breaking in case of several
equal-length chains. According to [KRDO17], maxvalid should favor the current chain C if it is the
longest, otherwise choose arbitrarily. There are several natural possibilities to perform this choice:

(i) Choose a chain that was delivered first out of those with maximal length.
(ii) Choose a chain at random out of those with maximal length.
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(iii) Prefer an extension of the current chain C. This is not fully specified, a rule to choose among
several extensions of C with maximal length is also needed.

(iv) Apply some fixed ordering rule, e.g. take the lexicographically first out of the chains with
maximal length.

We now sketch an attack for each of the cases above. The attacks can again be performed even
in the simple setting with a static stake, slot leaders sampled by an idealized beacon, and without
any corrupted parties.

Case (i). The adversary starts by partitioning the stakeholders into two sets S0 and S1 so that
each of these sets controls about one half of the total stake. It again maintains two tines T0 and
T1, and also keeps track of the prefixes T ′i of each Ti that were already delivered by SDiffuse∆
to all parties. The goal of A is to maintain |T ′0| = |T ′1|, and make all parties in Si believe that
T ′i is their current chain. This is achieved as follows:
– In each slot slj , the slot leader Uj ∈ Si will extend T ′i .
– A will delay this new block unless there is already also an existing block in T1−i \ T ′1−i that

can be used to extend both T ′0 and T ′1 by one block at the same time.
– If this is the case, A delivers both delayed blocks, extends both T ′0 and T ′1 by one block,

and uses its power to reorder messages in the inboxes of honest parties to maintain that
parties in Si still consider the new T ′i to be their current chain (note that parties follow the
rule ((i)) above).

The probability that a message would need to be delayed by A for more than ∆ slots to follow
this strategy decreases exponentially with ∆.

Case (ii). A similar approach as in the case (i) will work, with one small change. Here A does not
need to choose partitions S0 and S1 and maintain them using its inbox-reordering capability.
Instead, it can simply observe which of the chains T ′0 and T ′1 are being extended, and again only
deliver extensions for both of them at the same time. By rule (ii), each stakeholder will choose
its current chain by choosing at random between the new T ′0 and T ′1. This will guarantee a
quite even distribution of parties into S0 and S1 unless there are parties with a very large stake.

Case (iii). The same attack as in the case (i) will work. Here the partitions S0 and S1 don’t need
to be maintained by inbox-reordering, each party will stay in the same partition thanks to
following the rule (iii).

Case (iv). The attacker A again maintains two tines T0 and T1, and also keeps track of the prefixes
T ′i of each Ti that were already delivered by SDiffuse∆ to all parties. The goal of A is to make
T0 and T1 grow at roughly the same speed.
The attack starts by letting the honest slot leaders mine two separate length-1 tines from the

genesis block (by delaying the first one). Denote these blocks B
(1)
0 and B

(1)
1 , these will be the

first blocks of T0 and T1, respectively. Now, A delivers to all parties the one of these two blocks

(say B
(1)
i ) that has lower preference in the fixed ordering given by the rule (iv), and hence

the next honest slot leader will extend this tine by mining some block B
(2)
i on top of B

(1)
i . A

witholds B
(2)
i but now publishes B

(1)
1−i and due to the rule (iv), the next honest slot leader will

mine a block on top of B
(1)
1−i, call it B

(2)
1−i. Now A is in the same situation as before, hence it

again delivers the one of the blocks B
(2)
0 and B

(2)
1 that has lower preference according to the

rule (iv). The attack continues analogously.
This attack only requires ∆ ≥ 2.

E Useful Probability-Theoretic Tools

In our arguments, we are using the following standard variant of the Chernoff bound. See, e.g., [MR95]
for a proof.

Theorem 10 (Chernoff bound). Let X1, . . . , XT be independent random variables with E[Xi] =

pi and Xi ∈ [0, 1]. Let X =
∑T
i=1Xi and µ =

∑T
i=1 pi = E[X]. Then, for all δ ≥ 0,

– P[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δµ;

– P[X ≤ (1− δ)µ] ≤ e−
δ2

2+δµ.

34



We also employ the following theorem.

Theorem 11 ([Str65]). Let D1 and D2 be two distributions on a finite partially ordered set V
with partial order �. Then D1 � D2 iff there is a pair of (typically dependent) random variables, X1

and X2, taking values in V so that each Xi is distributed according to Di, and Pr[X1 � X2] = 1.

(Note that the statement of this theorem overloads the notation �, applying it both to distri-
butions in the sense of Definition 10 and elements of the partial order.) This result is implicit in
Strassen’s 1965 article [Str65]; a presentation with terminology closer to ours appears in Kamae et
al. [KKO77].

F From Executions to Forks

We define the useful notion of an execution tree that captures the structure formed by all chains
that are observed by any honest party during an execution.

Definition 18 (Execution tree). Consider an execution E of the hybrid experiment. The execu-
tion tree for this execution is a directed, rooted tree TE = (V,E) with a labeling ` : V → N0 that is
constructed during the execution as follows:

(i) At the beginning, V = {r}, E = ∅ and `(r) = 0.

(ii) Every chain C ′ that is input to maxvalid as a part of C in Step 2b or created as a new local
chain in Step 2c of πSPoS run by any honest party is immediately processed block-by-block from
the genesis block to head(C ′). For every block B = (st′, d′, sl′, Bπ

′, σj′) processed for the first
time:

– a new vertex vB is added to V ;

– a new edge (vB− , vB) is added to E where B− is the unique block such that H(B−) = st′;

– the labeling ` is extended by setting `(vB) = sl′.

We now observe that as desired, the execution tree of every execution is among the forks for
the characteristic string of that execution. Note that technically, this conclusion is conditioned on
no collisions in the random oracle outputs. For the sake of improved readability, we neglect the
possibility of such collisions in our further considerations.

Lemma 6. For any execution E of the hybrid experiment we have TE `∆ wE , unless a collision in
the responses of the random oracle occurs.

Proof (sketch). Given an execution E and the resulting execution tree TE , we need to prove that it
satisfies the properties (i)–(v) of Definition 6 with respect to wE . Property (i) follows directly from
the definition of TE , while (ii) follows from the order in which vertices in TE are created: every edge
is directed from an older vertex to a newer one and the root is the first vertex created. Property (iii)
is satisfied due to the requirement in Definition 2 that the sequence of slots in a valid blockchain
is strictly increasing (otherwise, the chain is rejected by πSPoS as invalid). To see property (iv),
note that by πSPoS, every uniquely honest slot leader will create a block and this is immediately
processed, resulting in a vertex with the respective label in TE . Finally, property (v) is satisfied as
every uniquely honest slot leader will be aware of any other such slot leader’s block created at least
∆ slots ago due to the guarantees provided by DDiffuse, and will hence extend a chain that is at
least as long as the one containing this block. Note that several of our arguments above assume no
random oracle collisions. ut

Given Lemma 6, we can later focus on investigating the properties of the distribution DfZ,A.

Roughly speaking, if we prove that a characteristic string sampled from DfZ,A, with overwhelming
probability, does not allow for any “harmful” forks for it, then this also implies that a random
execution with overwhelming probability results in a “harmless” execution tree.
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G Further Details on Forks, Forkability and Divergence

We introduce the notion of a forkable string that was central to the analysis in [KRDO17].

Definition 19 (Height and tine intersection). The height of a fork (as usual for a tree) is
defined to be the length of the longest tine. For two tines t1 and t2 of a fork F , we write t1 ∼ t2 if
they share an edge. Note that ∼ is an equivalence relation on the set of nontrivial tines; on the other
hand, if tε denotes the “empty” tine consisting solely of the root vertex then tε 6∼ t for any tine t.

The common prefix property in the synchronous case is studied by focusing on a local property
of “forkability”.

Definition 20 (Flat forks and forkable strings). We say that a synchronous fork is flat if it
has two tines t1 6∼ t2 of length equal to the height of the fork. A string w ∈ {0, 1}∗ is said to be
forkable if there is a flat synchronous fork F `0 w.

A fundamental tool in the security analysis in the synchronous case is an estimate of the

number of forkable strings of a particular length k. The original bound of 2−Ω(
√
k) in [KRDO17]

was strengthened to 2−Ω(k) in [RMKQ17].

Theorem 12 ([KRDO17,RMKQ17]). Let ε ∈ (0, 1) and let w be a string drawn from {0, 1}k
by independently assigning each wi = 1 with probability (1− ε)/2. Then Pr[w is forkable] = 2−Ω(k).
The constant hidden by the Ω(·) notation depends only on ε.

As mentioned above, the notion of forkability is directly related to (synchronous) divergence;
this is reflected by the theorem below.

Theorem 13 ([KRDO17]). Let w ∈ {0, 1}∗ with div0(w) ≥ k. Then there is a forkable substring
w̌ of w with |w̌| ≥ k.

An immediate conclusion of Theorems 12 and Theorem 13 is the following bound on the
probability that a synchronous characteristic string drawn from the binomial distribution has large
divergence.

Theorem 14 (Restatement of Theorem 3). Let `, k ∈ N and ε ∈ (0, 1). Let w ∈ {0, 1}` be
drawn according to the binomial distribution, so that Pr[wi = 1] = (1− ε)/2. Then

Pr[div0(w) ≥ k] ≤ exp(ln `−Ω(k)) .

A proof of a weaker bound of the form exp(ln ` − Ω(
√
k)) appears in [KRDO17]. Russell et

al. [RMKQ17] then strengthened the basic probabilistic tools used in [KRDO17] to achieve a bound
of the form exp(ln `−Ω(k)) for the local notion of forkability. For completeness, we include a proof
of Theorem 3 relying on the results of [RMKQ17].

Proof (of Theorem 3). It follows from Theorem 13 that if div0(w) ≥ k, there is a forkable substring
w̌ of length at least k. Thus

Pr[div0(w) ≥ k] ≤ Pr

[
∃α, β ∈ {1, . . . , `} so that α + k − 1 ≤ β and
wα . . . wβ is forkable

]
≤

∑
1≤α≤`

∑
α+k−1≤β≤`

Pr[wα . . . wβ is forkable]︸ ︷︷ ︸
(∗)

.

According to Theorem 12 the probability that a string of length t drawn from this distribution is
forkable is no more than exp(−ct) for a positive constant c. Note that for any α ≥ 1,

∑̀
t=α+k−1

e−ct ≤
∫ ∞
k−1

e−ct dt = (1/c)e−c(k−1) = e−Ω(k)

and it follows that the sum (∗) above is exp(−Ω(k)). Thus

Pr[div0(w) ≥ k] ≤ ` · exp(−Ω(k)) ≤ exp(ln `−Ω(k)) ,

as desired. ut
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H A Lazy Variant of πDPoS

This section sketches how the protocol πDPoS can be easily modified to significantly weaken the
requirement of all honest parties being online all the time. In the modified protocol πlazy

DPoS given in
Figure 12, every stakeholder comes online only at the beginning of each epoch, determining for
which of the slots in that epoch he belongs into the slot leader set. Consequently, the stakeholder
can only come online in those slots and create blocks as usually. Additionally, the stakeholder also
makes sure that it is not offline for k or more slots.

Note that this requires a slightly different mechanism of distributing existing chains, as the
lazy stakeholder needs a way to obtain a copy of the current chain the moment he comes online.
In theory, this can be achieved by letting all stakeholders diffuse their current chain even if they
haven’t added a block to it; in practice this would be handled by a request mechanism where a
stakeholder can ask for chains from other nodes upon coming online.

Protocol πlazy
DPoS

The protocol πlazy
DPoS is run in the same setting as πDPoS, with the same definition of T ji . It proceeds as

follows:
1. Initialization. This step is the same as Step 1 in πDPoS. Additionally, Ui initializes an empty

set L.
2. Chain Extension. After initialization, every stakeholder Ui acts as described below. If none of

the conditions below occurs, Ui can go online and offline arbitrarily, with the requirement that it is
never offline for k or more consecutive slots.

– upon a new epoch: Ui performs Step 2b of πDPoS. Afterwards, for every slot ŝl of the
upcoming epoch ej , Ui sends (Eval, sid, ηj ‖ ŝl ‖ TEST) to FVRF, receiving (Evaluated, sid, y). Ui
checks whether it is in the slot leader set of slot ŝl with respect to the current epoch ej by
checking that y < T ji . If yes, it adds ŝl to a set L.

– upon a slot in L: Ui performs the Steps 2c and 2d of πDPoS.
3. Upon being online: Whenever Ui is online, it performs Steps 2a and 3 of πDPoS.

Fig. 12: Protocol πlazy
DPoS.
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